QPULSEROLLER

®) CONVEYLOG X

Programmer’'s Guide

Version 2.2

July 2016
#: ConveyLogix - [TimerCounter.clp - Main Routine {192.168.203.20)] o] 54
File Edit “iew Controller/Logic Window Help _|5’|i|
DEE YRR S T8 Ee Do
—| I'I:ﬂl I'E1| -|I-| -|.I'I-| -()l (U)l (L)lONSlOSRlOSFl
Bit |Timen"E0unter| Eomparel Eomputef’Mathl Movex’LogicaIl todule Specificl Frogram Eontroll
x Tirmer =
E--%-EvEm.n =] TOF
P e 0 1 F Timer Off Delay [{EN)——
m 1 1 L Ti q —<DN>—
-0 M irer t
=@ ' Preset 5000
=3 Build Accum 0
EI{:I Tazks
E|{:| Main Task
=23 Main Program s
: 2 Tags t1.00 cTD t1
2 Main Raut 1]/[Count Down COy—{RES}
EI{:I Data Types o Counter cl DN}—
v-_ Predefined Preset 200
_ILI Accum 1l
3
e l |
I'. e :
|

For Help, press F1

Publication ERSC-1200

OPULSEROLLER

@ Co NVEY LOG | X Important User Information

Important User Information

> D> b P

ConveyLinx ERSC modules contain ESD (Electrostatic Discharge) sensitive
parts and components. Static control precautions are required when
installing, testing, servicing or replacing these modules. Component
damage may result if ESD control procedures are not followed. If you are not
familiar with static control procedures, reference any applicable ESD
protection handbook. Basic guidelines are:

Touch a grounded object to discharge potential static

Wear an approved grounding wrist strap

Do not touch connectors or pins on component boards

Do not touch circuit components inside the equipment

Use a static-safe workstation, if available

Store the equipment in appropriate static-safe packaging when not in
use

Because of the variety of uses for the products described in this publication,
those responsible for the application and use of this control equipment must
satisfy themselves that all necessary steps have been taken to assure that
each application and use meets all performance and safety requirements,
including any applicable laws, regulations, codes, and standards

The illustrations, charts, sample programs and layout examples shown in
this guide are intended solely for purposes of example. Since there are
many variables and requirements associated with any particular installation,
Insight Automation Inc. does not assume responsibility or liability (to include
intellectual property liability) for actual use based on the examples shown in
this publication

Reproduction of the contents of this manual, in whole or in part, without
written permission of Insight Automation Inc. is prohibited.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG I x @

Summary of Changes

The following table summarizes the changes and updates made to this document since the last

revision
15 April 2014 Updates Global Contact Information
1.6 June 2014 Added Function Block and Structured Text Sections
21 April 2016 Added Standard Function Blocks, ConeyLinx-Ai Controller Tags,
Appendix F
29 July 2016 Updated ConeyLinx and ConeyLinx-Ai Controller Tags, Added

ConeyLinx-Ai2 Controller Tags and Appendix G

Global Contact Information

PULSEROLLER

WWW.PULSEROLLER.COM
SALES@PULSEROLLER.COM
SUPPORT@PULSEROLLER.COM

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEYLOGIX Table of Contents

Table of Contents

Important USEr INFOrMELION.........ooiiiiiiiiiiiiiiieeiiee ettt 3
SUMMArY Of CRANGESottt e e e e e e e e e ettt e e s e e e e e e eattt s e eeaaeeeenees 4
Global Contact INFOrMALION. ... oo e e e et e e e e e e e e e eeaaeaa e e e e eaeeennees 4
BLIE= Vo] (ST | B o] 1 (=] TS 5
I =Y 1] o [€= Ut 1= PSR 9
1.1 SCIEEN AIBAS . .ceiii ittt e ettt e ettt e ettt e et e et e et et e et ert e e erb e e eera s 9
0 1 1= = - RSP 9
1.1.2 IMBINU B ..ottt e et e e e et e e e et e e e r e e e eneans 10
001 0 T 1o To | oY= | PP 12
114 6= To [0 [T a1 1S3 £ W o (o T = - 1 12
1.15 PO ECE Bl ... 12
O T I To T V1= USSP 12
1.1.7 = To [[YT P 12
1.1.8 OULIPUL WINUOW ..oeiiiiiiiiiiiiiiieieeee ettt ettt ettt ettt e e et e e e e e e e e e e e e e eeeeees 12
1.1.9 SEALUS B ... i et 12

1.2 Crea@le @ PrOJECL. ..o 13
1.3 Project OrganiZationcooooieoiiiiieeeeeee e 13
131 Y] o] o 14

IR T I U PP 14
1.3.3 DAlA TYPES et 14

1.4 Save, Close and Open @ ProjeCt.......coooo oo 15
1.5 Configure @ CONLIOIET.......ccooeeiiiie e e e e e e e 16
2.0 OFQANIZE TAGS .uuuieeeiiiiitiiiae e e e e ettt ee et e e e e et e eee et e s eaeaeeeeaas et e aeaaaeesesttaa s aeeaeeeesstttaaaaaaaans 17
2.1 DEfiNING TAGS. ... i iiiiiiiiiiiiiei e 17
2.1.1 1 00 01 17
2.1.2 1= T T 1 1 PP 17
2.1.3 D= 1= 1) 01T PSPPI PPPPTT 18

A A O (=T (== - (o PP PPTRRPPUPPPPPRPPPN 18
2.3 CrEALE @N AITAY ...ieiiii ettt ettt e et e et e e et e et e e e e aa e eraa s 24
2.4 ASSIGN AlIBS TAGS .o eeiiiiiiiiiiei et 27
2.5 NON-VOIALIE TAG . ii ittt 29
2.6 Produced and CONSUMEA TagS. ... cuueeeuuuuuuieeeaeeieeieiiaa e e eeeeeeaeennaaaaaeeaeeaeannnnaaaaeaaeeeennes 30
2.6.1 ASSIGN @ Produced Tag......ccoeeeiiiiiiie e 32
2.6.2 ASSIgN 8 CONSUMET TAYG ... uuuuuuununnnnnnnnntiniiiiuaeaeteaaeaesssaessesesnneeseeeeeessneaeeeesessesnnnnnnes 33

A A B 1= [(3 T = o SRR 34

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

- ConveylLogix Programmer’s Guide CONVEY LOG | x @

3.0 Program Ladder LOGIC.o a e 37
I 700 R 0 = 110111 LSRR 37
I Y 1 (=3 - To [0 [T o o [SSRPPPPPR 39

3.2.1 Arrange the INPUt INSLIUCLIONSoiiiiiii e 40
3.2.2 Arrange the OUtPUL INSIIUCLIONSccoiiiieeeeee e 41
3.3 ENter Ladder LOGIC.......ccouviiiiiiiiiiiiiieeeeeeee e 41
331 Append an EIBMENL ..o 42
3.3.2 APPENG @ RUNG e 48
3.4 ASSIGN OPEIANGScoeiiiiiiiiiiii e 49
KT ST =To [1 1] o [I= To [0 [T o Ko o | (o USSP 53
351 EdIt @ RUNG e 53
3.5.2 o[r= 1 I =1 =T o V=T o 53
3.5.3 [0 [10= 1 g IO 01T = o S SPSRP 56
3.6 ENnter RUNG COMMEBNT .. .ciiiiiii e e e e e e e e e e e e e e et e eaan s 57
3.7 Verify the ROULINEooooiiiiiiii 57

O I T 1o) =] o Tod < SRR 59
4.1 Creating a FUNCHON BIOCK.........coiiiiiiii e e 59
4.2 FUuNnction BIOCK Par@ametersSoceuuiiiiiii et e e e e et e e e e e e eennennes 60
4.3 FUNCHON BIOCK PrOgIaMeieiiiiiiiieiiieiiiiiiitieiieeieeeeeeeeeesesseesseeeeeeessesseesessnssssnnenenennnnes 61
4.4 Instances Of FUNCHON BIOCKSuuuiuiiiiiiiiiiiiiiiiiiiiiieiieneinneennnenenenennneneennnnennneeeennnnnne 62
T U Tox 1o g T =] (o Tt =1 P 62

5.0 Ladder LOGIC INSIIUCTIONS ... 67
o0 A = 1 1 1 1 T 1o o PP 67

5.1.1 Examing If CloSed (XIC) ..ouuuuuiiiie e 68
5.1.2 Examine If Open (XIO)ccoo oo 70
5.1.3 OUtput ENEIgIZE (OTE) ..uuuuuuuiuiuuuiiiiiiiiiiiiiiiieiiiiietieeieeseseeseeseeeeseeeeebsesseseesessesnnnnnees 72
5.1.4 OUIPUL LAtCh (OTL) ceiiiiiii it e e e e e e e eraaaaas 73
5.1.5 Output UNIAtCN (OTU)uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiieeiieeeeieeeeeeeeseeeeebseeseseeseneeeenennees 74
5.1.6 ONE SNOt (ONS) ...ttiiiiiiiiiiiiiiiiieiieetieeieeebebeeeeeee bbb essebbesenennnes 75
5.1.7 One Shot RiSING (OSR).....ccoiiiiiiiie e e e e e e 77
5.1.8 One Shot Falling (OSF)cooiiieii e 80
5.2 Timer and Counter INSTUCHIONSc.iiiiiiiiiie e e e e e e e e e e e eenenes 82
521 Timer On Delay (TON)coooiiiiiiiie e e e et e e e e e eeeeeenanns 83
522 Timer Off DeIaY (TOF) ... e et e e e e e eeeeennes 87
5.2.3 Retentive TimMer ON (RTO) .uuuuuii i e e e e et eea e 91
5.24 (07010101 00 o I (O I U PP USSRPPPPRRN 95
5.2.5 COoUNE DOWN (CTD) ettt e ettt e e e e e e ettt s e e e e e e eeeetana e e e e eeeeeenenes 99
5.2.6 RESEE (RES) ..o 103
5.3 Compare INSIIUCHIONScooiiiiiiiiiiiiee e 105

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEYLOGIX Table of Contents

5.3.1 LIMIE (LIM) ettt 106
5.3.2 Mask Equal to (MEQ)........uuuiiiiii et e et e e e e e e e 110
5.3.3 EQUAI O (EQU) .eeiiiiiiiiiiiiiee ittt 113
5.3.4 Not EQUAl 10 (NEQ) . .uuuuuiiiieeiiiieiiiie sttt e e e e et s e e e e e e e e et s e e e e aanennnes 115
5.3.5 LESS ThaN (LES) ...ttt 117
5.3.6 Greater Than (GRT) ... 119
5.3.7 Less Than or Equal t0 (LEQ) ...ccooeeeeeeeeeeeeeee e 121
5.3.8 Greater than or Equal to (GEQ) ...vuuiiiiiiiiieiiiieee et e e e aanees 123
5.4 Compute/Math INSIIUCHIONScooviiiiiiiiiiiiiiie e 125
541 AQG (ADD) ..ottt a e e e e e e e s 126
5.4.2 SUBLIACE (SUB)....ciiiiiiiiiiii it e e et e e e e e e e e e et e e e aaaeanne 128
5.4.3 MURIPIY (MUL) ..ottt e e e e 130
5,44 DIVIAE (DIV) ittt ettt e e as 132
545 MOAUIO (MOD) ..coiiiiiiiiiiitiie ettt e et e e e e e eeeas 134
5.4.6 N T=To Tz LI (1 =) PP 136
5.4.7 ADSOIULE VAIUE (ABS)euiiiiiiiiiiiiiiiiiiiiiiiiieiiiiii bbb bbnensnsnnnnnnne 138
5.5 Move/Logical INStrUCTIONS.cccovviiiiiiiiiiiiiiiee e 140
551 MOVE (MOV) ittt e et e e e e e a e 141
5.5.2 Masked MOVE (MVIM) ... 143
5.5.3 BitwWiSE AND (AND)uiiiiiiiiiiiiei ittt et e e e 146
554 BitWISE OR (OR) ..ottt e e e 148
5.5.5 Bitwise EXCluSiVE OR (XOR)cooiiiiiie e 150
55,6 BItWIiSE NOT (NOT) ciiiiiiiiiiieee ettt e e e et e e e e e e e e s nbreareeaaaeas 152
5.5.7 ClEAI (CLR) .ettiiiiiieiiiite ettt e e 154
5.6 Module SPecifiC INSIIUCLIONSccoiiiiiiiiiie e e e e e e eaenes 155
5.6.1 Read RegisSter (RDR)ccoo i 156
5.6.2 Write RegiStEr (WRRY)uuiiiiiiiiiiiiiiiiitiiiiiiiiiiiiiiiii e eeeeseaeeeeeeneneene 158
5.6.3 Write Register Comm (WRC)ouuiiiii ittt eeaees 160
5.6.4 Distance ON LEft (DOL)ccooiiiieiiiiie ettt e e e e e eeaees 162
5.6.5 Distance On RIght (DOR)ooeeieeeeeeeeeeeee e 165
5.7 Program Control INSIIUCLIONSoooiiiiiiiiii e e e et eeeeeeeenes 168
5.7.1 JUMP (JMP) oottt e e e e e e as 169
5.7.2 LADEI (LBL) w.tttettieeeeeeet ettt e et a s 171
5.7.3 Jump to FUNCtioN BIOCK (JFB)uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieesieiieeeeeeeee 172
5.7.4 Return from Function BIOCK (RFB)cccoiiiiiiiiiii i 173
6.0 Program STTUCTUIEA TeXE.....coe oo 175
6.1 ASSIGNMENT...coiiiiiiiiiie e 176
LA b o] £ == (0] o PRSP 177
6.2.1 Arithmetic Operators and FUNCLIONScouuiiiiiiiieii e 178
6.2.2 Relational OPEratorsScooeeieeeeee e 180
6.2.3 o]0 [of= I @] 0 =] =1 (o] = 181
6.2.4 BItWISE OPEIALOISoeiuuiiiieeeeieeeiit e e e e ettt e e e e e e ettt e e e e e eaeeeeaaennaaaeeeaeeeennes 183
6.2.5 ModbuSs ReQISter OPEIatOrScccee e e 184
6.2.6 Order Of EXECULIONuueii e e et s e e e e e e e eaa s s e e aaaeennnes 184

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

n ConveylLogix Programmer’s Guide CONVEY LOG | x @

6.3 CONSITUCES ...eiii ettt e ettt e e ettt e e ettt e e ettt e e e e et e e e eeaaeeeeennns 186
ST 00 e I | 187

G T 7 N T O L 190
LT TR N O L N I L 193
ST B0 S = {1 196

6.4 FUNCLON BIOCKccoiiiiiiiiiie 197
6.4.1 Standard FUNCHON BIOCKSuuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeieeeeeeeeennnneenseennenne 199
6.4.2 User-defined FUNCtion BIOCKScouuiiiiiiii e 206

6.5 COMIMENLS ...ttt e ettt e e ettt e e ettt e e ettt e e e e et e e aeeaaeeeeennns 207
7.0 Download a Project into CONLIOIErcooiiiiicce e 209
8.0 DEDUG MOTE ... 211
8.1 Enterthe Debug MOUE.........coooiiiiiiiiiiii 211
8.2 Change the Controller MOAEccooiiiiiiiii e eeeaaens 212
8.3 Watch and Change B0ooIEaN TAgSuuuiiiiiieiiiiiiiiiiie e eeeeeeetties e e e e e et s e e e e aeaenes 213
8.4 Watch and Change Non-boolean TagsSccovuviiiiiiiiiiiiiiiiiiieeeeeeeeeeee 215
8.5 Leave the Debug MOde...........ooooviiiiiiiiiiiii 216
APPENIX A — CONLFOIET TAGS ..eevvvriiiiieeeieeeetiee et e e e e et e e e e e e e e et s e e e e e e e sttt e e e e aeeeeerraannans 217
ConVeYLINX CONTIOIEN TGS ...coviiiiiiiiiiiiiieeee e 217
ConveyLinx-Ai and ConveyLinx-Ai2 Controller TagsS..........ccuvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 219
ConveyNet I/P (CNIP) Controller TAQScovvuiiiiiiiieee e ee et e e e e e e et s e e e e aeenenes 220
Appendix B — Data TYPE CONVEISIONoouuiiiiiiiieeei it e et s e e e e e e e e e e e e e eerraaaans 223
SINT OF INT 10 DINT oo e e e e e e e e e e et e et e e st e e aaeeneas 223
DINT O SINT OF INT L.ttt sssssssssnnnes 226
AppeNndix C — Errors deSCHPLION.cii i e e e e e e e e e e eerraaans 227
Appendix D — Module-Defined SITUCTUIEScoviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 230
Appendix E — Merger Unit EXamPpPleooooviiiiiiiiiii 231
Appendix F — Simple Motor Control Example with Servo Commandsccccceeeieeeiiiiiininnnn.. 247
Appendix G — Configuration SCreen SIIUCTUIE..........covviiiiiiiiiiiiiiiiiieeeeeeeee e 253
N[0 L= U PP P PP PRRPPPI 259

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Getting Started _

1.Getting Started

1.1 Screen Areas

To understand more easily how to work with ConveyLogix Programmer software, main screen

areas are pointed on the picture and described below:

Title Bar
Menu Bar —File Edit Wiew Caontroller/Logic

Toohar =0 S H | & 2@ S| 2 W[k & & | #da & §i o

& ConveyLogix - Example.clp - Main Routine (192.168.211.21)

Window Help

Ladder. —| |1:|1| I'E'Il -||-| -m-| <>-| <u>| <L>| ONSl OSH' OSFl
Instructions —
Ear Eit ITimera’EnunterI I:-:umparel I:Dmpute.n’h“lathl MDVEHLDgicaII M odule Specificl Program Cc
- ' E¥'Example.clp - Tags (192.168.211.21)
Tags View —JE:L0 Revision A :
El] Mg ____S_I:E.pe:lh-'lam Frogram j
El {;—l% 1 Tag Mame Alias For | Base Tag | Data Type
. S e [Phase INT
F.rD.IEI:t Bar H\H @ I:I - ldim CTRIT
““\EJ.D Build
L] 37
[—]D Tasks
El{:| b ain T azk, | |
=L Main Pragram . | LimitSwitch
0 Tags I 1 r
5 i 1L
Ladder View —73] ' | _'|_I
=
D'—_JtF'Ut Download complete successfuly (Program memory = 4 %, Tags =
Wyind oy \ﬂ‘“ﬂ
KN
Status Bar

1.1.1 Title Bar

Title Bar displays the information of working project (file with extension .clp), selected view (Main
Program or Tags), controller IP Address and Debug information (described in point 6).

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

1.1.2 Menu Bar

CONVEYLOGIX (®)

‘ Description

File Menu Shortcut
New creates an untitled project (] Ctrl+N
Open opens an existing project = Ctrl+O
Close closes the current project

Save saves the current project = Ctrl+S
Save As saves the current project to a different file

Print _pla_rallgtss ladder logic and/or Main Program =) Cirl+P
Print Preview _pla_;eg;/siet\)/;flgflsre;:i:]c;%i; and/or Main Program

Print Setup setup printer properties

Exit quits the application

Edit Menu ‘ Description [ofe]y! Shortcut
undo undo the last action Ctrl+Z
Cut cuts the selection and put it to Clipboard & Ctrl+X
Copy copies the selection and put it to Clipboard Ctrl+C
Paste gglsetsé (tjhleo git?obr?ard content to the) Ctrl+V

Edit menu commands apply only to Main Program (Ladder View) operations.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I x Getting Started

View Menu ‘ Description ‘ Icon ‘

Toolbar hides/displays the Toolbar

Status Bar hides/displays the Status Bar

Project Bar hides/displays the Project Bar fe=

Zoom In increase the zoom level of the Main Program (Ladder &
View)

Z00m Out (\JI/(iaechve-;‘ase the zoom level of the Main Program (Ladder &

Controller/Logic Description
Menu

Verifies the Ladder program. The result of the operation &

Verify Program is displayed in Output window.

downloads the project to controller with chosen IP

Download Program Address i
Debug puts ConveyLogix Programmer in Debug mode o

(described in point 6)

puts ConveyLogix Programmer in Normal (editable)

Stop Debugging mode

puts the controller in Program mode. In this mode i

Program Mode controller stops execute the Ladder program

Run Mode puts the controller in Run mode. In this mode controller &
executes the Ladder program

Controller opens the dialog box to change Controller Type and/or its =

Properties IP Address (described in point 1.5)

Program Mode and Run Mode menus are active only in ConveyLogix Programmer Debug mode.

Window Menu

Window Menu contains the standard Windows menus to navigate between Main Program
(Ladder View) and Tags (Tags View).

Help Menu ‘ Description ‘ Icon ‘

Help Topics opens the ConveyLogix Programmer user’s guide K?
opens the dialog box to display ConveyLogix

About e : 74
Programmer version information

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

1.1.3 Toolbar

Toolbar contains the shortcuts to some of the menus:

DEHE BB S 2% k! a B #Eadilo

Icons meaning is described above in section 1.1.1 Title Bar.

1.1.4 Ladder Instruction Bar

Ladder Instruction Bar is enabled only in Main Program (Ladder view). It divided on several tabs
by categories. Every tab contains relevant Ladder Instructions buttons as described in section
5.0 Ladder Logic Instructions).

1.1.5 Project Bar

Project Bar contains the information of the current project as described in section 1.3 Project
Organization).

1.1.6 Tags View

Tag View is the window where you edit your tags.

1.1.7 Ladder View

Ladder view is the window where you edit your ladder logic.

1.1.8 Output Window

Output window displays the results of Download Program, Verify Program, runtime errors, etc.

1.1.9 Status Bar

The right side of the Status Bar provides ongoing status information and prompts as you use the
software. The left side of the Status Bar provides information about Caps Lock, Num Lock and
Scroll Lock keys.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

1.2 Create a Project

Getting Started

From the File menu, select New or click on [icon. The next dialog appears.

Controller Properties

IP &ddess:
| o .0 .60 .0

Contraller Type:
I CormveyLing j

Cancel |

B

e Type the IP Address of the controller you need to work with.

e Choose the controller type — ConveyLinx or ConveyNet.

e Press OK button and a project called “Untitled” will be created.

1.3 Project Organization

The project organization is shown on Project Bar.

| x

EI{:l b ajor

I:—]D Tazks
EIl:l Main Tazk
E||:| b it Pragramm

----- (21 Main Routine
=7 Data Types

-1 Predefined
17 User-Defined

{:I M adule-Defined

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

1.3.1 Revision

“Major” and “Minor” contain values as to the major and minor versions of the project and these
fields are editable. Build contains a value which increments automatically during every Save
operation.

1.3.2 Tasks

ConveyLinx and ConveyNet controllers support only one task, called Main Task and run only
one Program, called Main Program. Main Program represents by two views:

e Tags — double click to open Tags View. Tags View displays all information about tags.

Ef'untitled - Tags (192.168.211.21) i] 4

Scope: IMain Pragram j

Tag Mame Alias For | Base Tag Data Type | Init Yalue | Skyle Descripkion

1 | H

e Main Routine — double click to open Ladder View. Ladder View displays all information
about ladder diagram routine.

EE'untitled - Main Routine {192.168.211.21}) -0 x|

1.3.3 Data Types

Data Types are divided by three categories:

e Predefined — ConveylLogix supported data types.
e User-Defined — not supported.
¢ Module-Defined — controller supported data types.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY I_OG I X Getting Started

1.4 Save, Close and Open a Project

To save a project, select File/Save menu or click on = icon. If the project is Untitled, Save As

dialog appears to choose your project name.

If you want to store a project with another name, select File/Save As menu.

When the project is saves once, the every next save operation increases Build value.
To close the project, select File/Close menu.

To open a project, select File/Open menu or click on & icon and select a file from disk.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

1.5 Configure a Controller

To configure a controller, select Controller/Logic / Controller Properties menu or click on 2

icon. The next dialog appears.

Controller Propetties |

IF Addeszs:

|192.‘IEE.2‘I1 oA

Controller Type:

Cancel

il

I Corveeyling j

IP Address is the IP address of the controller you need to work with.

Controller Type is a type of the controller — ConveyLinx or ConveyNet.

Change the controller properties if you need and press OK button for cofirmation.

If you change the Controller Type from ConveyLinx or ConveyNet or vice versa, you may
lose some Controller Tags properties.

With changing controller’s IP Address from dialog above, you may download and debug

the same ladder program to different controllers.

Example:

Let you have a network with three controllers with IP addresses 192.169.211.20,
192.169.211.21 and 192.169.211.22, which have to work with same ladder program.

Change IP Address in dialog above to 192.169.211.20, then download and debug the
ladder program.

Then change IP Address in dialog above to 192.169.211.21, download and debug the
ladder program.

And then change IP Address to 192.169.211.22, download and debug the ladder

program.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

2.0 Organize Tags
2.1 Defining Tags

Tag is a named area of the controller's memory where data is stored. Tags are the basic
mechanism for allocating memory, referencing data from logic, and monitoring data.

The controller uses the tag name internally and doesn’t need to cross-reference a physical
address.

The minimum memory allocation for a tag is a byte.

When you create a tag, you assign the following properties to the tag:

e Scope

e Tag Type

e Data Type
2.1.1 Scope

Tags might divide of two categories by Scope:

¢ Main Program Tags — user defined tags.

e Controller Tags — controller defined tags. They cannot be changed and depend from
controller type. Controller tags are described in Appendix A — Controller Tags.

2.1.2 Tag Type

There are five types of tags that you can create:

o Base —refers to a normal tag (selected by default). This type of tag allows you to
create your own internal data storage.

¢ Alias — allows you to assign your own name to an existing tag, structure tag member,
or bit, and refers to a tag which references another tag with the same definition.

e Produce —refers to a tag that is produced by another controller whose data you want
to use in this controller.

¢ Consumed — refers to a tag that is consumed by another controller.
¢ Non-volatile — power independent tags.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

2.1.3 Data Type

The data type defines the type of data that a tag stores, such as a bit, integer, etc.

ConveyLogix Programmer supports four types of data:

e Simple — BOOL, SINT, INT and DINT.

Data Qé Size Range

BOOL 1 Bit Oorl

SINT 1 Byte -128 to +127

INT 2 Bytes -32,768 to +32767

DINT 4 Bytes -2,147,483,648 to +2,147,483,647

e Structure — a data type that is a combination of other data types. Structure is
formatted to create a unique data type that matches a specific need. Within a
structure, each individual data type is called a member. Like tags, members have a
name and data type. ConveyLogix Programmer supports two predefined structures —
TIMER and COUNTER for use with specific instructions such as timers, counters, etc.
and one user-defined — Zone.

e Array — a numerically indexed sequence of elements of the same data type. In
ConveyLogix Programmer, an array index starts at 0 and extends to the number of
elements minus 1. An array can have up to 3 dimensions unless it is a member of a
structure, where it can have only 1 dimension. An array tag occupies a contiguous
block of memory in the controller with each element in sequence.

2.2 Create aTag

Tags are created or edited in Tags View. Open Tags View by double click to Tags on Project
Bar. To create a tag click into Tag Name area on the last row (marked with sign *):

B untitled - Tags (192.168.211.21) =181

Scope: I bl ain Program j

Tag Mame Alias For | Base Tag Daka Tvpe | Init Yalue Skvle Description
* 1]

< | B

Type a name of the new tag and then press Enter key or click outside from the rectangle
area.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

B Untitled - Tags (192.168.211.21}) -0l x|
Scope: I M ain Frogramm j

Organize Tags

Tag Marme flias For | Base Tag Data Type | Init Yalue Skyle Descripkian

i AutoRun BOOL 0| Decimal

al

| B

The Tag has the next properties:

Scope —to create a tag is allowed only for Main Program.
Tag Name — unique alphanumeric name, excluding the symbols “.”, “,”, “[“ and “]".
Alias For — used to represent this tag to another (described in point 2.4).

Base Tag — the original tag name, related to alias. In case that Alias For is not used,
this field is disabled (grayed).

Data Type — type of the data of the tag.

To change data type click on Data Type cell. The next dialog box appeatrs:

Select Data Type

X
[rata Type:

Im Cancel
SINT

INT

DIMT

TIMER

COUMTER

Fone

—Array Dimenzions
i, O Dirn. 1

0

= =
= =

Choose a type from Data Type list and press OK button.

If the chosen type is different from BOOL, the tag contains subtags, represent like a
tree. If data type is a simple type the subtags are BOOL types. Count of subtags is
equal of type length in bits.

If data type is a structure, subtags are fields of the structure. Every field is
represented down to BOOL types.

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

e |If data type is an array, subtags are the elements of the array. Every field is
represented down to BOOL types.

o For example choose data type as SINT. To see the subtags, click on “+” button (left of
the tag name):

E¥'Untitled - Tags {192.168.211.21) -10| x|
Scope: IMain Pragram j
Taqg Mame flias Far Base Taq Diata Type Init Yalue Skyle Descripkion
b = AutoRun SINT 0fDecimal
- Aukofun, BOCL 0|Decimal
- AukoRun, 1 BOCL 0{Decimal
~AutoRun. 2 BOOL 0|Decimal
- AutoRun. 3 BOOL 0|Decimal
- AutoRun. 4 BOOL 0|Decimal
- AutoRun.S BOOL 0|Decimal
- AutoRun. & BOOL 0| Decimal
- AutoRun. 7 BOOL 0| Decimal
*
4| | B

¢ Init Value — shows the initialize value of the tag, which is the start value when the
controller power-up. Default value is 0.

To change this value, click on Init Value cell. Edit box is shown:

EE'untitled - Tags (192.168.211.21) O] x|

Scope: I kd ain Program j

Tag Marme flias For Base Tag Data Tvpe Init Yalue _ Skvle Descripkion
| - dukaRun SIMT Decimal

4| | H

o Type the new value and then confirm by pressing Enter or clicking outside the edit
box area. To cancel typed Init Value changes, press Esc.

o If typed Init Value is not in the range, message box will appear. When you press OK,
edit box will stay to correct or cancel the value.

e The new Init Value will be changed on corresponding subtags (if they exist).

Publication ERSC-1200 Rev 2.2 — July 2016

*

@ CONVEYLOGI X Organize Tags

EE uUntitled - Tags (192.168.211.21) O] x|
Scope:; I Main Progranm j
Tag Mame Alias For | Base Tag | Data Twpe Init Yalue Skyle Descripkion
B| £ AukaRun SINT 23| Decirnal
- BukoRun. 0 BO0L 1| Decimal
- BuboRun, 1 B0 1| Decimal
- BukoRun, 2 B0 1| Decimnal
- BukoRun, 3 BCOL 0| Decimal
~AukoRun, 4 BOOL 1|Decimal
~Aukofun. 5 BO0L 0| Deecimal
~AukoRun. & BOOL 0| Cecimal
~BukoRun, 7 B0 0| Decirnal
#*

Likewise, if subtag is changed, change is reflected on corresponding tag.
e Style — the format that numeric values are displayed in.

Style ‘ Presentation Example ‘

Binary 21 2#1101

Octal 8# 8#47

Decimal Signed numeric value -5; 27

Hex 16# 16#FFFFFFFF
IP Address IP Address 192.168.211.21

To change the Tag style, click on Style cell. Combo box with permitted formats will appear.
Open it and select desired style.

EE Untitled - Tags (192.168.211.21) =10l x|

Scope: I b ain Program j

Tag Mame flias For Base Tag Drata Type Inik Yalue | Skvle | Descripkion
B G- AwtoRun SIMT B|Decimsl j
* Binary
Octal

Drecimal
Hex

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

CONVEYLOGIX (®)

OF’ULSEROLLER

Confirm the selected style by pressing Enter or clicking outside the combo box area.

On the next picture are shown tags with simple data types and different styles.

EE uUntitled - Tags (192.168.211.21) O] x|
Sroope: I Main Prograrn j
Tag Mame flias For | Base Tag | Data Type Init Yalue Stvle Descripkion
[AukoRun SINT -24|Decimal
[+ valvePos INT 4524 | Octal
[#I-5kep DIMT 16#FFFFFD34 | Hex
[My IP DIMT 192,168,211, 21 |IP Address
~Manial Bl 2#0|Binary
#*

On the next table, Data Type ranges for simple data types are shown for different styles:

DataType/ | pgog SINT
Style

2#0000000000000000
Binar 250 10 241 | 2400000000 to | 2#0000000000000000 to | 0000000000000000 to
y 2#11111111 | 2#1111111111111111 | 2#1111111111111111
1111111111111111
Octal 8#0 to 8#1 | 8#0 to 8#377 | 8#0 to 8#177777 8#0 to 8#377777
. -2,147.483,648 to
Decimal Oto1l -128 to 127 -32768 to 32767 3147 485647
1640 to 16400 to 16#00000000 up to
Hex 16#1 164#FF 16#0000 to 16#FFFF 164#FFFFFFFF
0.0.0.0 to
IP Address | Not used Not used Not used OEE 955 255 255

Init Value and Style are disabled for complex data types (structures and arrays).

If the Data Type is changed to type with smaller type length, and Init Value exceeds type
range, the value is converted to new type.

Example:

Let Data Type of tag AutoRun is INT and Init Value is 16#FE17. Changing Data Type to
SINT, Init Value will be changed to 16#17.

Correspondence from IP Address to number is explained in the next example.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

Example:

Organize Tags

Lets have a tag MyIP (as shown on figure above) with Style IP Address and Init Value
192.168.211.21. If Style is changed to Hex, 16#D315C0A8 will displayed. Bytes respond to
the next part of IP Address:

Most significant byte D3 ->211
15->21
C0 -> 192

Least significant byte A8 -> 168

o Description — user text for better explanation of the tag.

To enter a description, click on Description cell. Edit box will arrear:

EF'Untitled - Tags {192.168.211.21)

Scope: I b ain Program j

=101 x|

Tag Mame

Alias For

Base Tag

Data Tvpe

Init Yalue Skyle Descripkion

b [AutoRun

SINT

Decimal

(=]

Type the description and then confirm by pressing Enter or clicking outside the edit box area.

All subtags inherit typed description. Inherited descriptions show in grey. If you type a

description of subtag, its color will change to black (for example AutoRun.4 subtag).

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

EE'untitled - Tags (192.168.211.21) =10l x|
Soope: IMain Frograrn j
Tag MName flias For | Base Tag | Data Type Init Yalue Skvle Descripkion
El AutoRun SIMT & |Decimal Aukomaticaly Fun Mode
= AutoRun. 0 BOCL 0|Decimal
~AutoRun. 1 BOCL 1|Decimal
- AutoRun. 2 BOCL 1|Decimal
- ButoRun. 3 BOCL 0|Decimal
~autoRun. 4 B0l 0|Decimal Fun Step 2
- ButoRun, S BOCL 0|Decimal
P = ButoRun. & BOCL 0|Decimal
- ButoRun, 7 BOCL 0| Decimal
+

2.3 Create an Array

Array is a tag that contains a block of multiple pieces of data. Within an array, each individual
piece of data is called an element. Each element uses the same data type.

An array tag occupies a contiguous block of memory in the controller, each element in
sequence.

The Data may be organized into a block of 1 or 2 dimensions array.

An element within the array starts at 0 and extends to the number of elements minus 1 (zero
based).

To create an array, click on Data Type cell of an existing tag. Select Data Type dialog will
open. Choose Data Type and type the array dimensions.

select Data Type |
Data Type:

Cancel

—Array Dimengions
Dirn. O Dirn. 1
4 I =1
= =1

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

Organize Tags

®) CONVEYLOG X

Dim. 1 is the number of elements in the first dimension. If Dim.1 is zero, the next dimensions
are disabled (grayed).

Dim. 2 is the number of elements in the second dimension. Choose OK button to confirm
changes.

ConveylLogix and controllers can index arrays.

Example: Single dimension array

In this example, a single timer instruction times the duration of several steps. Each step
requires a different preset value. Because all the values are the same data type (DINTS) an
array is used.

Scope: I b ain Program j

Tag Mame flias For Base Taqg Dakta Type Init Yalue Skyle Descripkian
[H-Step SINT 0|Cecimal
B| I Timer_1 TIMER. .
=) TimerPresets DINT[4] {...}
[+ TimerPresets[0] DINT 2000 |Cecimal
[+ TimerPresets[1] DINT 3000 |Cecimal
[TimerPresets[2] DINT 4000 | Cecimal
[TimerPresets[3] DINT 5000 | Cecimal
*
TOM
Timer On Delay [{EM)
Tirner Tirmer 1| 0N
Preset 2000 _{ }_
Accum 0
Timer_1.0M WA Timer_1
] [Ml e {RES}
Source TimerPresets[Step)
2000
Dest Timer 1.PRE
2000

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

On MOV instruction Source operand indexes TimerPresets tag by Step. When Step = 0,
TON instruction accumulate time to TimerPresets[0] = 2000 milliseconds. When Step =1,
TON instruction accumulate time to TimerPresets[1] = 3000 milliseconds and vice versa.

When Step is out of TimerPresets index range (Step < 0 or Step > 3), MOV instruction
doesn’t execute (rung-condition-out is false).

Example: Two dimension array

In this example, a single timer instruction times the duration of Step_1 and Step_2. Each pair
of steps requires a different preset value.

Scope: I M ain Program j

Tag Mame dlias Faor Base Tag Caka Tvpe Init Yalue Skyle Drescripkion
[+I-Stepl SINT 0|Decimal
[+I-Skepz SINT 0|Decimal
B Timer_1 TIMER. Ik
[l TimerPresets DIMT4,2] 4ok
[+ TimerPresets[0,0] DIMT 2000 |Decimal
[+] TimerPresets[0,1] DIMT 3000 | Decimal
[+ TimerPresets[1,0] DIMT 4000 | Decimal
[+ TimerPresets[1,1] DIMT 5000 | Decimal
[+ TimerPresets[2,0] DIMT /000 | Decirmal
[TimerPresets[2,1] DINT 7000 |Decimal
[+ TimerPresets[3,0] DINT 2000 |Decimal
[+ TimerPresets[3,1] DINT 2000 |Decimal
*
TOM
Timer On Delay (< EN}——
Timer Tirner_1 (DN}
Praset 2000
Accum 0
Tirner_1.0M WA Tirner 1
] [fl e {RES}
Source TirmerPresets[Stepl Step?]
2000
Dest Timer_1.PRE
2000

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

On MOV instruction Source operand indexes TimerPresets tag by Stepl and Step2.

When Stepl = 0 and Step2 = 0, TON instruction accumulate time to TimerPresets[0,0] =
2000 milliseconds. When Stepl = 0 and Step2 = 1, TON instruction accumulate time to
TimerPresets[0,1] = 3000 milliseconds and vice versa.

When Stepl is out of TimerPresets first index range (Stepl < 0 or Stepl > 3) or Step2 is out
of TimerPresets second index range (Step2 < 0 or Step2 > 1), MOV instruction doesn’t
execute (rung-condition-out is false).

2.4 Assign Alias Tags

An alias tag lets you create one tag that represents another tag. Both tags share the same
value. When the value of one of the tags changes, the other tag reflects the change as well.

Use aliases in the following situations:

e Program logic in advance of wiring diagrams.

e Assign a descriptive name to controller 1/O.

e Provide a simpler name for a complex tag.

e Use a descriptive name for an element of an array.

The tags window displays alias information. Aliases may be assigned only for Main Program
tags.

To assign an alias, click on Alias For cell to desired tag. Combo-box will appear. Type tag
name or open the combo-box to choose a tag from existing. For example, change the scope

to Controller, click sign “+” on Inputs tag and select Inputs.4.

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

E¥ untitled - Tags (192.168.211.21) 10| x|

Scope: |h-1ain Pragram j

Tag Mame Alias For Base Tag Daka Tvpe Init value Skyle Descripkion
[FulRead INT[Z] {..t
[Duration TIMER {..F
| SensorCyliinderd j BOCL 0| Cecimal
+
EEE—
T ag Mame | [rata Tupe | Dezcription o
B Inputs DINT |-
i belnputs BOOL Left Senzor Port, PIN3
i IRpLIk2. BOOL Left Cantral Part, PIN3
BOOL Right Senzor Port, PIMN3
BOOL Right Control Port, PIN3

BOOL Left Sensor Port, PIN4
BOOL Left Cantral Part, PIN4

-) BOOL Right Sengor Port, PIMN4
Lelnrnbs 7 Rl Rinht Canteal Fian plT.ILI
k

T e E _

Double-click on Inputs.4 and then press Enter or click outside the combo-box.

EF'untitled - Tags (192.168.211.21) -0 x|
Scope: |h-1ain Frogram j
Tag Name flias For Base Tag Dakta Type Ik Yalue Skyle Descripkion
[#-FulRead INTLZ] {..r
[#]- Duration TIMER. 0k
~SensorCylinderd | Inpuks. 4 Inputs. 4 Bl 0|Decimal
+
l | H

Alias For shows the name of chosen tag. Base Tag shows the original tag. Data Type and
Init Value are the values of Base Tag (in this example are on Input.4). If you change the Init
Value of SensorCylinderA, you exactly change the Init Value of Input.4.

This example shows how to assign a descriptive hame to controller 1/O.

If you type an non-existent tag name for Alias For, the sign “X” will show in first column.

Publication ERSC-1200 Rev 2.2 — July 2016

Organize Tags

Ef'untitled - Tags (192.168.211.21) -0 x|
Scope: IMain Pragram j
Tag Mame Alias For Base Tag Daka Tvpe Init value Skyle Descripkion
[-Fulread INT[Z] {..r
[+ Duration TIMER ..}
| SensorCylinders |Start
*
J | ol
Use the steps above to assign the next tags aliases.
EF'untitled - Tags (192.168.211.21) -0 x|
Scope: IMain Pragram j
Tag Mame Alias For Base Tag Daka Tvpe Init value Skyle Descripkion
[FulRead INT[Z] {..t
[Duration TIMER {..F
~gensorCylinderd |Inputs.4 Inputs.# BOCL 0| Cecimal
- Cylinder & Qukputs, ¢ Qukputs, B 0|Cecimal
- Preset D ation.PRE Curation,PRE |DINT 0| Decimal
~FullReads FullRead[0] Fullread[a] INT 0|Decimal
+
4| | B

2.5

CylinderA shows how to assign a descriptive hame to controller 1/O.
Preset shows how to provide a simpler name for a complex tag.
FullReadA is a descriptive name for an element of an array.

Non-Volatile Tag

Non-volatile tags are power independent tags. They use the part of controller’s Flash
memory. After power-up controller cycle, the values of non-volatile tags remain unchanged.

Non-volatile tags are supported only for ConveyLinx controller.

Size of all Non-volatile tags must not exceed 96 bytes.

Only Main Program tags may be non-volatile.

To make an existing tag as non-volatile, right-click on cell at the first column. The next menu
appears:

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

CONVEYLOGIX (®)

BF'Example.clp - Tags (192.168.211.21) =10l x|
Scope: I kd ain Program j
Tag Mame Alias Far Base Tag Diata Twpe Init Yalue Skyle Ciescriptior &
~Run BOOL 0|Decimal
[Duration TIMER 1.}
IF ’;d“' e L INT 0|Decimal e
orveisiie SINT 0|Decimal
i HoldingFirsk Holding. 0 Holding, 0 BOOL 0|Decimal v|
1| v
Choose Non-volatile menu.
B Example.clp - Tags {192.168.211.21) -0 x|
Scope: I b ain Pragram j
Tag Mame flias For Base Tag Data Tvpe Init Yalue Shyle Diescriphion &
~Run BOCIL 0|Decimal
[+]- Durakion TIMER. 4k
M p{ = -Phase INT 0| Decimal i
[#-Holding SIMT 0|Cecimal
~HoldingFirsk Haolding. 0 Haolding.0 BOCL 0|Cecimal v|
1| aw

2.6

Produced and consumed tags are use to transfer data between controllers.

e Sign “N” in the first column shows that the tag is non-volatile.
¢ To make a non-volatile tag as ordinary, right-click on cell at the first column and

select Non-volatile menu.

Produced and Consumed Tags

Produced tag sends data to another controller. Consumed tag receives data from another
controller.

ConveyLogix Programmer supports up to four produced/consumed tags.

Information about produced/consumed tags is displayed in Tags View. To show it, change

Scope to Controller.

Publication ERSC-1200 Rev 2.2 — July 2016

Organize Tags

EF'Example_1.clp - Tags (192.168.211.21) O] x|
Scope: I Contraller j

Tag Mame Alias Far Base Tag Daka Tvpe Init Yalue Skyle Des-:riptiu:uil
- ServoResetRight BOCL 0|Cecimal
- ServolC_ommandLeft BOCL 0|Cecimal
~ServaCommandright BOOL 0|Decimal

5| Tagl SINT 0|Decimal

& |HTagz SINT 0|Decimal

& | Tag3 SINT 0|Decimal

& | Tagd SINT 0|Decimal -

4| | v 2

¢ When a produced/consumed tag is not used, the sign “X” is shown at the first column.
e To assign a produced/consumed tag, click on cell at the first column of Tagl. The
next dialog box appears.

Connection Tag il

IP Address:
Cancel |

|n.n.n.n

Tvpe:
" Mot Uzed
" Produced
" Consumed
From/T o:
| -

Feqister number;

e

e |P Address — IP Address of the controller, which is received/sent the data.
o Type —type of the connection.

e From/To — packet of data, which is received/sent. This field is enabled when Type of
the connection is Produced/Consumed.

o Register number — the first local Modbus register of the packet of data. This field is
disabled and is only for information in all cases, except the last. In the last case
(Register number) this field is enabled. Allowed Modbus register numbers are form 1
up to 299 or greater and equal then 1100.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide

2.6.1 Assign a Produced Tag

CONVEYLOGIX (®)

To assign a produced tag (for example Tagl) fill the above dialog with the next data.

Connection Tag

IF Addresz:

|1EIE.‘IEE.2‘I1.

Type:
£ Mot Uszed
* Produced

i Consumed
From/T a:

24

Cancel |

Ifeed |

Reaqister number:

|134

x|

Press OK button. Then click on Data Type cell on Tagl and select type INT and array
Dimension 1 to 4. Press OK button.

Ef'Example_1.clp - Tags (192.168.211.21) =100 x|
Scope: I Controller j

Tag MName Alias For Base Tag Daka Type Init Yalue i = Deg:l
~ServolCommand.. . BOCIL 0|Decimal
~ServolCommand.. . BOCIL 0|Decimal

P ([Tagl INT[4] {...r

% |[#Tagz SINT 0|Decimal

& |[#Tag3 SINT 0|Decimal

% |[#Tagd SINT 0|Decimal -

1] | ny

In this example, Tagl is a block of data with size 8 bytes. Our controller will send these 8
bytes to controller with IP Address 192.168.211.24 into Modbus registers 134 to 137 (8

bytes).

In the next table are shown starting Modbus registers of the controller, which will receive the
data (in this example — 192.168.211.24). Size of the data depends of produced tag data type.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEYLOGI X Organize Tags

To Starting Modbus register
Accumulate/Release Up 104
Accumulate/Release Down 184

Infeed 134

Discharge 232

Register Number User defined

Size of the data of produced tag cannot exceed 32 bytes.

2.6.2 Assign a Consumed Tag

To assign a consumed tag (for example Tag?2) fill the above dialog with the next data.

Connection Tag il

IF Addresz: oK.

|192.159.211 i
Carcel |

Type:
" Mot Uzed
" Produced
% Consumed

Feqister number;

—

Press OK button. Then click on Data Type cell on Tag2 and select type INT.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

BF'Example_1.clp - Tags {(192.168.211.21) I |
Socope: | Contraller j

Tag Mame Alias Far Base Tag Daka Tvpe Init Yalue Skyle Degil
~Servoi_ommand. . . B0l 0| Cecimal
~Servoi_ommand. . . B0l 0| Cecimal

P | Tagl INT[4] {..}

C B[Tag2 INT 0|Decimal

5 |ETag3 SINT 0|Decimal

5 |ETagd SINT 0|Decimal -

< | Mo

In this example, Tag2 is a block of data with size 2 bytes. Our controller will receive these 2
bytes from controller with IP Address 192.168.211.23 from Modbus registers 18 (2 bytes).

In the next table are shown starting Modbus registers of the controller, which will send the
data (in this example — 192.168.211.24). Size of the data depends of produced tag data type.

To Starting Modbus register
Accumulate/Release Up 106

Accumulate/Release Down 186

Upstream Zone 116

Downstream Zone 190

Register Number User defined

Size of the data of produced tag can not exceed 32 bytes.

You may change Tag Name, Data Type, Init Value, Style and Description in the same way as
normal tags.

2.7 Delete a Tag

Click on cell at the first column of tag, which you want to delete. Sing “»” will appear.

Publication ERSC-1200 Rev 2.2 — July 2016

*

® CONVEYLOG X

Ef Example.clp - Tags (192.168.211.21)

Scope: I b ain Program j

Organize Tags

=10 x|

Tag Mame flias For Base Tag Data Tvpe Init Yalue Skyle Diescripkiorn
~Run BCCIL 0|Decimal
[#]- Duration TIMER. 4k
b - Phase INT 0| Decimal b
[#]-Halding SIMT 0|Decimal
~HaldingFirst Halding. 0 Halding.O Bl 0| Decimal v|
1| aw

This sign indicate that this tag is currently selected. To delete a selected tag, press Del key.

Conformation massage will appear.

Publication ERSC-1200 Rev 2.2 — July 2016

oPULSEROLLER

®) CONVEYLOG X

Program Ladder Logic

3.0 Program Ladder Loqgic
3.1 Definitions

Before you write or enter ladder logic, review the following terms:

e Instruction
You organize ladder logic as rungs on a ladder and put instructions on each rung. There are
two basic types of instructions:

- Input instruction - An instruction that checks, compares, or examines specific

conditions in your machine or process.

- Output instruction - An instruction that takes some action, such as turn on a device,

turn off a device, copy data, or calculate a value.

output instructions

T

input instructions

? ? ? ¢
1 L 1 L P P
] L 1 L R oA
e Branch

A branch is two or more instructions in parallel.

7 ? ?
1 LC 1 L PO
1 L 1 L R
2 I:uranch< ;
branch] [LY
7
1 L
1l L

There is no limit to the number of parallel branch levels that you can enter. The following
figure shows a parallel branch with four levels. The main rung is the first branch level,

followed by three additional branches.

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

input instruction output instructions
? ?

1 E T

oS

Lt
e

Lalnt
R

T
R

You can nest branches to levels. The following figure shows a nested branch. The bottom

output instruction is on a nested branch that is three levels deep.

input instructions output instructions
? ?
1 E o
1 C oS
? ?
N Oy
1 C Lo
2 2 ‘
1 E N
1 C LS
TS
oS

¢ Rung Condition
The controller evaluates ladder instructions based on the rung condition preceding the
instruction (rung-condition-in). Based on the rung-condition-in and the instruction, the
controller sets the rung condition following the instruction (rung-condition-out), which in turn,

affects any subsequent instruction.

input instruction output instruction
¢ ?
1 L T
1 T wo

rung-condition-out

rung-condition-in

Publication ERSC-1200 Rev 2.2 — July 2016

*

@ CONVEYLOGI X Program Ladder Logic

Only input instructions affect the rung-condition-in of subsequent instructions on the rung:

If the rung-condition-in to an input instruction is true, the controller evaluates the instruction
and sets the rung-condition-out to match the results of the evaluation.

If the instruction evaluates to true, the rung-condition-out is true.

If the instruction evaluates to false, the rung-condition-out is false.

An output instruction does not change the rung-condition-out.
If the rung-condition-in to an output instruction is true, the rung-condition-out is set to true.

If the rung-condition-in to an output instruction is false, the rung-condition-out is set to false.

e Prescan

The controller also prescans instructions. Prescan is a special scan of all routines in the
controller. The controller scans all main routines during prescan, but ignores jumps that could
skip the execution of instructions. The controller uses prescan of relay ladder instructions to
reset non-retentive 1/0 and internal values.

During prescan, input values are not current and outputs are not written. The following
conditions generate prescan:

- Toggle from Program to Run mode.
- Automatically enter Run mode from a power-up condition.

Prescan does not occur for a program when:

- The program becomes scheduled while the controller is running.

- The program is unscheduled when the controller enters Run mode.

3.2 Write Ladder Loqgic

To develop your ladder logic, perform the following actions:

¢ Choose the Required Instructions;

e Arrange the Input Instructions;

e Arrange the Output Instructions;

e Choose a Tag Name for an Operand(s).

Separate the conditions to check from the action to take. Choose the appropriate input

instruction for each condition and the appropriate output instruction for each action.

To choose specific instructions, see Chapter 4.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

The examples in this chapter use two simple instructions to help you learn how to write

ladder logic. The rules that you learn for these instructions apply to all other instructions.

Symbol Name Mnemonic Description
% F Examine If Closed XIC An input instruction that looks at one bit
of data.
If the bit is: Then the
instruction
(rung-condition-
out) is:
on (1) true
off (0) false
— 3—— Output Energize OTE An output instruction that controls one
bit of data.

If the instructions Then the
to the left (rung- instruction

condition-in) are: turns the bit:

true on (1)

false off (0)

3.2.1 Arrange the Input Instructions

Arrange the input instructions on a rung using the following table.

To check multiple input conditions when: Arrange the input instructions:

all conditions must be met in order to take action In series:

For example, If condition_1 AND condition_2 AND condition_1 condiion_2 condition_3
. 1 F 1 F 1 E
condition_3... 1 L 1 T 1 [

any one of several conditions must be met in order In parallel:

Publication ERSC-1200 Rev 2.2 — July 2016

oPULSEROLLER

®) CONVEYLOG X

to take action

Program Ladder Logic

condition_1

For example, If condition_1 OR condition_2 OR

condition 3 condition_2

caondition_3

there is a combination of the above In combination:
For example, If condition_1 AND condition_2... condition_1
OR

If condition_3 AND condition_2...

condition_3

3.2.2 Arrange the Output Instructions

Place at least one output instruction to the right of the input instructions. You can enter

multiple output instructions per rung of logic, as follows:

Option: Example:

sequence on the rung (serial)

branches (parallel) out_1

between input instructions, as long as

the last instruction on the rung is an output

instruction

3.3 Enter Ladder Loqic

A new routine contains a rung that is ready for instructions.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

EE'untitled - Main Routine {192.168.211.21}) -0 x|

=l

When rung is selected, the cursor is blue. When you add an instruction or branch, it appears
to the right of the cursor.

Use the Instruction Bar to add a ladder logic element to your routine.

Branch Leveal
Rung g neh ¥IC ¥I0 OTE OTU OTL

—| |1:|1| I'E'Il -||-| -m-| <>|<u>|<L>|oms|OSR|OSF|

Bit ITimera’EnunterI I:-:umparel I:Dmputefh“lathl Mwe;’LugicalI b odule Specificl Frogram D:untr-:ull

3.3.1 Append an Element

There is three ways to append an element:

e using buttons from Instruction Bar;
e drag & drop an existing element;
e copy and paste an existing element.

Example: This example shows how to append elements, using methods above.

Click on XIC button from Instruction Bar.

XIC element is appended and cursor is positioned around it. To add a parallel combination

after selected XIC, click on Branch button.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Ladder Logic

0 1 L _‘l

To append elements on first branch select on the beginning of the first branch.

[
1 L \

Click on XIO button from Instruction Bar.

? ?

S s B]/[‘

To append Timer On Delay element, select Timer/Counter tab from Instruction Bar and then
click on TON button. Now parallel combination is on the left part on Ladder View because

contains only input instruction.

i TOmM
0] [H Timer On Delay |[{EN)
Titner ? —{DN}—
Preset ?
ACcum ?

The last instruction in parallel combination is output instruction (TON) therefore parallel

combination is placed on the left part on Ladder View.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide

CONVEYLOGIX (®)

Now XIC element will copy on the second branch by drag & drop operation. Select XIC

element. Press left mouse button inside the selection, press CTRL key and then drag mouse.

The cursor will change as on picture below.

?

? TOM
1]] [£ 'y]/[S Timer On Delay
Tirner ?
Preset ?
ACcum ?

—(EN)—o—

(o)

£

F

Grey circles show the possible places to copy the element. Grey circle is the chosen place.

Release left mouse button on the beginning on the second branch.

? TOM
0] []/[Tirner On Delay
Tirner ?
Preset ?
ACcum ?

L (en)

(on)-

XIC element will copy on the beginning on the second branch.

If Ctrl key is not pressed, the selected element will move to chosen place.

To append Add element, select Compute/Math tab from Instruction Bar and then click on

ADD button.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Ladder Logic

4 7 TON
1 LC] i i
0 1 T _|/||: | Timer On Delay [{EN)
Tirmer ? —(DN}—
Freset ?
ACcurm ?
; ? - ADD
1 T Add -
Source A ?
o
Source B ?
?
Dest ?
o
Click Branch button to add a parallel combinations after Add element.
7 ? TOM
1 C] i i
0 1t _I//il: | Timer On Delay | {EN}
Tirmer ? —(DN}—
Freset ?
ACcum ?
] ‘ C oo]
1 Add
Source A ?
2
Source B ?
2
Dest ?
?

Then select on the beginning of any branch (for example of the second branch). Click on
Branch Level button to append a branch. Branch is appended after the branch which element
is selected.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

4 ¢ TON
1 C] i i
0 1 b J/[Timer On Delay |-{EN)
Tirner ? —{DN)—
Preset ?
Accum ?
: ¢ - ADD
1 T Add
Source A ?
o
Source B ?
2
Dest ?
2
Change Instruction Bar tab again to Bits and click on OTE button.
; ? - : ? TOM
; 5
0 1 T _|/1|: | Timer On Delay | {EN)
Titner ? —{DN}—
Freset ?
Azcum ?
: 7 - ADD
1 ¢ Add
Source A ?
2
Source B ?
2
Dest ? 7
¢ P
(.

Now OTE elements will append by Copy/Paste operation. Right click on OTE element. The

next menu will show:

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Ladder Logic

v ? TOM
1 LC] ' 5
0 1t J/f[| Tirner On Delay |{EM}
Tirner ? —{DN}—
Preset ?
Accum ?
: 7 - ADD
1 F Add
Source A ?
2
Source B ?
?
Dest ? ?
7 £
Zukt ki
Chrl4+C
Paste Zhr]
Delete
Edit Element
Togale Bt
Click on menu Copy. OTE element copies into Clipboard.
Select the beginning of the first branch and right click in selection area.
; ! - : v TOM
i i
0 1 T y/[| Timer On Delay |{EN)
Tirmer ? —{DN}—
Freset ?
ACcum ?
v ADD
] [Add
Source A 2 Uk krl4
? Copy (Chrl+C
Source B 7 Paste (Chrl+Y
2
Dest -p Delete
? £y
L

Click on menu Paste. OTE element copies from Clipboard.

Do the same to append OTE element on the second branch.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X

7 7 TOM

1 r 1 - \
0 1 ¢ y/[Timer On Delay |{EN}

Timer ? —{DN}—

Preset
ACcum ?

2

? ADD ?
1 E Add

Source A

Ly
e

Source B

Eaay
e

Dest

i
e

3.3.2 Append a Rung

To append a rung, click on button Rung from Instruction Bar.

In this example rung will append on the end on ladder logic. Rung appends/insert after rung

where the selected element is.

There is a second way to append a rung. Right-click on the rectangle before input power line

of the desired rung and select Add menu.

Publication ERSC-1200 Rev 2.2 — July 2016

®

QPULSEROLLER

®) CONVEYLOG X

Program Ladder Logic

? ?
"I IF P
Zut Chrl
Copy ChrlHC
Paste (g b]
Delete
Edit Rung Commenk
The new Rung (1) will append after the selected (0).
? ¢
0 1k ¢

3.4 Assignh Operands

Every element has one to three operands. Every operand has an operand area.

Most usable bit instructions (like XIC, XIO, OTE, OTU and OTL) have only one operand.

? #—— Operand area

—3

Timers and counters also have one operand.

TOM
' Tirner On Delay jEm/_Dperand area
Timer 2 —{DN}_
'?.
ErcEcSuErL ?E:' Init value area

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Mathematical elements (ADD, SUB, MUL and DIV) have three operands.

ADD
— Add -

Source A ¢ First operand area
¢ First operand init value
source B ¢ Second operand area
¢ Second operand init value
17— Third aperand area
?

? 17— Third operand init value

Dest

Unassigned operand is represents by red “?”. To assign an operand double-click on operand

area.

i -] ?
:
0 1 t | 11

Type the operand name or open the combo-box to select the name from existing tags.

|
I a j _ ? _ T
q E 1 Timer On Delay |{EN}
Timer ? DN
Tag Marme | Data Type | Description & Preset ?
BT Inputs DINT _| | [Accum ’
i i Inputs. Left Sengar Part
b e Inputs. BOOL Left Control Port ?
i lnputs.? BOOL Right Senzor Po P
- Lelnputs.3 BOOL Right Control Po -
i belnputsd BOaL Left Sensar Part, v 7
L dnputs. BOOL Left Control Port ‘ '
i elnputs B BEOOL Right Setzor Po ? I': }
Poi ks 7 BNl Finkt T antral P > ?
4| iﬂ ﬂ_l ? ?
?
Caontroller j - I": }
|

Because in example has no entering tags change the scope to Controller (combo-box at the

bottom), open Inputs tag and select for example Inputs.0. Double-click on it or press Enter.

Tag name will put on the operand edit box. Click outside or press Enter to confirm operand

name.

Publication ERSC-1200 Rev 2.2 — July 2016

*

CONVEYLOGI X Program Ladder Logic

Inputs.0 ¢

0 1k 1T

Left Sensor Port, PIMNG

Inputs.0 is appeared in operand area. Tag’s description is shown bellow the element (if any).

Now we will open Tags View and will created tag for this example usage.

=
Scope: I b ain Program j
Tag MName flias For Base Tag Data Type Ik Yalue Skvle Descripkion
Run EOOL 0|Decimal
=l Duration TIMER 1.
[+ Duration. PRE DIMT S000|Decimal
[+ D ation, &CC DIMT 0|Decimal
- [ration. EM BOCL 0|Decimal
- [gration. TT BOCL 0|Decimal
- [uration, DM BOCL 0|Decimal
[#-Phase INT 0|Decimal
[#]-Halding SINT 0|Decimal
~HoldingFirsk Holding. 0 Holding. 0 BOOL 0|Decimal
~HoldingSecond Holding. 1 Holding. 1 BOOL 0|Decimal
~Holding Third Holding, 2 Holding, 2 BOOL 0|Decimal
B i-Skart BOCOL 0|Decimal
+

Assign tags to element as a picture below.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

tart Run TOM
1 LC 7 ! \
d 1 € J//[.T|meanDeIaﬁ,f. {ENY
Tirner Duration —(DI\D—
Preset 000
Arccurm]
Fun ADD HoldingFirst
it Add ¢
Source A F'has; <Holding.0>
Source B 1 Holding=econd
)
Dest Fhasze _
0 <Halding. 1=
Holding Third
T
oS
<Haolding. 2=

Operands for XIC and XIO elements are tags with BOOL type.

TON has only one operand — Duration, which is a TIMER structure. Preset shows the init
value of Duration.PRE element from Duration structure. Accum shows the Duration.ACC init

value.

First operand (Source A) and Third operand (Dest) are tag Phase, which has INT type. For

Second operand (Source B) is typed immediate (constant) value.

Tags for OTE elements in parallel are respectively HoldingFirst, HoldingSecond and

HoldingThird. These tags are aliases and below the elements are shown base tag names.
If tag type is not supported to element operand, “?” symbol shows in init value area.

If operand is a constant, init value area below is hidden. If a constant is not in the type range,

“?” symbol shows in init value area.

When init value for a tag is changed in Tags View, corresponding init values in Ladder View
are refreshed immediately. Likewise, if init value in Ladder View is changed, it reflects to init

value in Tags View.

Publication ERSC-1200 Rev 2.2 — July 2016

QPULSEROLLER

@ CONVEYLOGI X Program Ladder Logic

3.5 Editing Ladder Logic

3.5.1 Edita Rung

Right-click in the rectangle before input power line of the desired rung. The next menu

appears.

? ?

1 T
Zuk Chrl+3
Copy Chrl+iC
Paste Chrl+y

Falnt
e

Delete
Add
Edit Rung Cormmenk

Use Cut or Copy menu to put the selected rung into Clipboard. When use cut operation, the
selected rung deletes from the ladder logic.

Paste menu is enabled only when rung is put to Clipboard.

Cut, Copy and Paste menus are duplicated in Edit menu.

Select Delete menu to delete a rung.

There is a second way to delete a rung. Select a rung (right-click on the rectangle before

input power line) and press Del key.

3.5.2 Edit an Element

To edit an element, simply right-click on it. The next menu appears.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Lirnit Switch | ?

TR N
Cuk Chel43

Copy Chel4+C
Faste kel

iy
e

Delete
Edit Element

Togale ik

Use Cut or Copy menu to put the selected element into Clipboard. When use cut operation,
the selected element deletes from the ladder logic.

Paste menu is enabled only when element is put to Clipboard.

Cut, Copy and Paste menus are duplicated in Edit menu.

Select Delete menu to delete a rung.

The second way to delete an element is to select an element and press Del key.

To change an element instruction, select Edit Element menu. Combo-box with all supported
instructions appears.

Lirnit Switch
| —

T ST

Select the desired instruction (for example ADD instruction) and click outside the combo-box

or press Enter key. If you want to cancel the changing, press Esc key.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEYLOGI X Program Ladder Logic

A0
1 Add f.: :}
Source & LimitSwitch
?
Source B ?
o
Dest ?
a

Operands from old instruction are copied to operands to the new instruction. Count of copied

operands is equal of less count of operands of two instructions.

To move an element, click on it and drag over the ladder logic.

DrmitSwitch ? ?
’ 1~ 1°C "
4L L 1§Limit5witch i
1 r
1 L

The grey circles show the possible places where you can move the dragged element. The
current place is displayed in green circle. Drop the element by releasing the left mouse

button.
‘ ? Lirmit =witch ? ‘
1 1 L 1 L Oy
‘ 1 L 1 L oA ‘

There is a way to copy an element by using drag & drop operation. In this way copied

element doesn’t put into Clipboard.

Press Ctrl key and then drag the element. Also, you may press Ctrl key during the drag

operation (on the cursor displayed sign “+”).

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

LirnitSwitch ?

L

OPULSEROLLER

CONVEYLOGIX (®)

’ 1 a7 F
1t 1t E CimitSwitch
- 7 [
1T

Drop the element.

!

‘ Lirnit Switch ? LirnitSwitch :
1 1 L 1 L 1 L P
| 1 L 1 L 1 L NS

3.5.3 Edit an Operand

Editing an operand is performed by double-clicking on operand area as the same way,

described in point 3.4.

You may cut, copy, paste and delete the text from/to operand edit-box using right-click menu

commands.

rndm

Zuk
Copy
Paske
Delete

Select Al

The second way to copy an operand is by using drag & drop operation.

Click on operand area and drag over the ladder logic.

fa

LimitSwitch [?
1 1 C 3 LirnitSwitch
1 L 1 '

Publication ERSC-1200 Rev 2.2 — July 2016

e

OPULSEROLLER

@ CONVEYLOGIX Program Ladder Logic

The grey rectangles show the possible places where you can move the dragged operand.
The current place is displayed in green rectangle. Drop the operand by releasing the left

mouse button.

‘ LirnitSwitch LirmitSwitch ? ‘
1 1 L 1 L
| 1 L 1 L

iy
e

3.6 Enter Rung Comment

To enter/edit rung comment double-click in marked rectangle (picture below) above the rung.

Inputs. 14 Cutputs. 14
N T
1 C N

Left Mechanical Break

Type the comment text and then press Enter key or click outside.

Comment far Rung O ‘

Inputs. 14 Cutputs. 14
1 E o

1 C LS
Left Mechanical Break ‘

3.7 Verify the Routine

As you program your routine, periodically you may check your work.

Choose Controller/Logic / Verify Program menu or click on [icon. Your program will be

check and the result will display in Output window.

On the picture below is shown program with 3 errors. For example errors are marked and

enumerated in mangenta color.

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X

#: ConveylLogix - [Example.clp - Main Routine {192.168.211.21}] - |EI|5|
File Edit Wiew ControllerfLogic ‘Window Help _|ﬁ||5|
DEHE 285 2 (Ea [Bdaas o
—| h:r1| rEr1| -||-| -m-| -<>| -<u>| <|.>| ONSlOSRlOSFl
Bit |Timer£C0unter| Eomparel Eomputea’Mathl MovefLogicall Module Specificl Program Control
x B
=10 Revision]’? Run TOR
-2 Major C | i
DEE|1 2 1 T _I//il: . Tirner On Delavl - ENY
. Timer Duration —(DN}—
= Miner Error 1 Preset 5000
g 0 Accurm 0
=1 Buid
=18 Phase ADD HoldingFirst
=1 Tasks 1 L Add '
EID Main Task 1L -
=23 Main Program Error 2 Source A F'hasg <Halding.0>
: & TaQS) Source B Eit HoldingSecond
L Main Routine 5 P
-0 Data Types Dest hase -
D Predefined 0 =Huolding. 1=
-[:| UserDefined Holding Third
- Module-D efined N
Errar 3 LR
1] | » =Halding. 2= |
x
Verify Example.clp - Main Routine [(192.165.211.21)
Error at Rung: 2, Elewent: XIC, Operand: 0 -> Missing operand
Error at Bung: 2, Elewment: XIC, Operand: 0 -> Invalid type
Error at Rung: 2, Elewent: ADD, Operand: 1 -> Not wvalid nuwder
Example.clp - Main Routine (192.165.211.21) - 3 error(s)
| 2
For Help, press F1 &

Double-click on error in Output window to select an element where is the error. In this

example the selected error is related to ADD element.

Every error line contains the next information of the error:

e Rung number;

e Element instruction;

¢ Number of operand — started at O;
e Error description.

Here is the explanation of errors in this example:
Error 1 — there are no assigned tag to the XIC instruction operand.
Error 2 — the operand of XIC instruction allow BOOL tag, but type of tag Phase is INT.

Error 3 — it is expected for Source B operand to be entered a immediate (constant) value, but

6t is not a constant.

If the routine reports error, Download Program will break.

Publication ERSC-1200 Rev 2.2 — July 2016

oPULSEROLLER

@ CONVEYLOGI X Program Ladder Logic

4.0 Function Blocks

Function block (FB) is a programmable organization unit which, when executed, yields one or
more values. ConveylLogix Programmer uses two screens to represent FB definition. FB
Routine contains your program instructions and FB Tags — FB parameters. Function block is
called from Main Program or other FB by defined instance (tag) in the controller’'s memory.

4.1 Creating a Function Block

To create a Function block right click on Function blocks in Project Bar tree and select Add
menu. The following dialog box appeatrs:

x
M arne: 0k, I
I Cancel |
Twpe————— Language
¥ Function Block {* Ladder Diagram
£ Functioh i~ Structured Test
) Tippe

A FB is characterized with two elements:
. Name — unigue name of Function block type;
. Language — program language of Function block instructions.

Press OK button to create the Function block type.

For example:

Create two function blocks named Calculate, used Structured Text and Square — used

Ladder Diagram. They are added to Project Bar tree.

Publication ERSC-1200 Rev 2.2 — July 2016

m ConveylLogix Programmer’s Guide CONVEY LOG | X @

H-1 Revision
=1 Tasks
=17 Main Task

EI{:I tair Program
Tags
~[B] Main Routine
=3 Function Blocks
L_—_|D Calculate

=-3 Square
Square Tags
@ quare Routine
H-Z7 Standard Function Blocks
=-_7 Data Types
#-0 Predefined
I:l Ilzer-Defined
-1 Module-Defined

4.2 Function Block Parameters

To view and edit parameters double-click on created Function block Tags in Project Bar tree.

E¥'Function Block - Calculate® - Tags =10l x|

Tag Name flias For Base Tag Data Type | Init Yalue Skyle Descripkion
“Input

Stk

(e

- Static

The block parameters are defined in the interface of the called block. These parameters are
referred to as formal parameters. They are placeholders for the parameters that are
transferred to the block when it is called. The parameters transferred to the block when it is
called are referred to as actual parameters.

The following rules apply to the use of block parameters within the block:

. Input parameters may only be read.
. Output parameters may only be written.
. In/out parameters may be read and written.

Publication ERSC-1200 Rev 2.2 — July 2016

*

@ CONVEYLOGI X Program Ladder Logic

Static parameters are accessible only inside of an instance of a function block.

Input, Output and InOut parameters are accessible outside of an instance of a function block.

For example:

Add parameters to FB Calculate as the picture below:

E¥'Function Block - Calculate - Tags - 10| x|

Tag Mame Alias For | Base Tag Data Type | Init Yalue | Stvle Descripkion
I Input
[+ Paramnd, INT 200|Decimal — |First Param
[+-ParamB INT 0|Decimal |Second Param
+
= Cutput
¢ EEum DINT O|Decimal |Sum
+
) Indut
¢ [Bl-ParamiC INT O|Decimal | Third Param
+
[-)-Skatic
¢ [Const SIMT 100|Decimal [Constant

4.3 Function Block Program

Function block program represents a set of instructions, which are executed on function
block instance.

ConveyLogix supports two languages for function block program:

. Ladder Diagram (LD) — enables the programmable controller to test and modify data
by means of graphic symbols. These symbols are laid out in networks in a similar manner to
a “rung” of a relay ladder logic diagram. LD networks are bounded on the left and right by
power rails;

. Structured Text (ST) — a textural programming language, derived from Pascal.
For example:

E® Function Block - Calculate - Routine O] x|
[F | ecsiF| case| Fom |

Sum := Parami * Paramd + ParanwE + ParawmC + Const:

IF Swm = 5000 THENM
Sum 1= S000;
END TIF:

| 2

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

4.4 Instances of Function Blocks

A call of a function block is referred to as an instance. An instance of function block is a block
in controller's memory (tag) which type is a function block name.

For example:

Add an instance of FB Calculate in Main Tags — first define a tag named CalcA and then
change its type to Calculate.

B Example.clp - Tags (192.168.211.21) =10l x|
Soope: I Main Program j
Tag Mame Alias For Base Tag Caka Tvpe | Init Yalue | Stvle Descripkion
=-Run SINT 0|Decimal
E-Calca Calculate {..}
EI-InpuI:
[F-Calch. Params INT 200|Decimal First Param
[#-Calch, ParamB IMT 0|Decimal Second Param
[=] Dukpuk
[Calem, Sum DINT 0|Decimal [Sum
(= IniCuak
[Calca, Paramc INT 0|Decimal Third Param
[=]-Skakic
. B Calch, Const SINT 100|Decimal | Constant
- ResulkZalc DINT 0|Cecimal
+

When you assign a FB type to a tag, FB parameters derive initial values of FB definition.
Then if you change a parameter initial value for one instance, it is not changed to other
instances and to FB definition.

4.5 Function Block Calls

When a block is called, you must assign values to the parameters in the block interface. By
providing input parameters you specify the data with which the block is executed. By
providing the output parameters you specify where the execution results are saved.

In your program (Main Routine or FB Routine) you can examine function block output
parameters, but you can not assign a value to output parameter.

Also you can not use invoked function block static parameters.

From LD programs function block is called by JFB instruction with function block instance
(FB Tag).

Example:

Calling function block from Main Program:

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

Program Ladder Logic

®) CONVEYLOG X

E¥'Example.clp - Main Routine (192.168.211.21) O] x|
Aszsign FB input parameteres =
RAC MACHN
0 b ove — howe —
Source 20 Source 30
Dest CalcA. ParamB Dest Calch Paramc
0 0
Second Param Third Param
Call FB
Fun.0 JFE
1] [Jurnp to Function Block ——
FE Tag Calch,

Manipulate FB output parameter

b0
2 bl v —
Source Calcs Sum b
1]
Dest FesultCale
0

When Run.0 is false, FB is not executed and data in CalcA remain unchanged.
Rung?2

When FB call is finished, you may check or assign output parameters. In this example main
tag ResultCalc = CalcA.Sum.

When one block calls another block, the instructions of the called block are executed. Only
when execution of the called block has been completed does execution of the calling block
resume. The execution is continued with the instruction that follows on the block call.

When FB which calls another block is on LD language, calling performs in the same way as it
is called from Main program.

When FB which calls another block is on ST language, calling performs by using called FB
instance. In parentheses are assigned inputs parameters (by := sign) and refers outputs
parameters (by => sign).

Example:

Calling instance SquareA from FB Square type from FB Calculate:

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

First create tag and routine of Square FB type.

B¥'Function Block - Square - Tags =10 x|
Tag Mame flias For Base Tag Data Type Init Yalue Skyle Descripkion
=l Input
¢ [EParam INT 100| Decimal
+
El-Output
¢ EResult DINT 0|Decimal
+
- ImCuk
+
- Skatic
+
E® Function Block - Square - Routine =10 x|
-
hALIL
] Multiply -
source A Fararm
100
source B Faram
100
Dest Result b
0
[
Then in Calculate FB create a tag, named SquareA with Square data type.
E® Function Block - Calculate - Tags -0 x|

Tag Mame flias For Base Tag | Data Tvpe | Inik Walue | Stvle Descripkion :l
] InCut
B Param INT 0|Decimal | Third Param
*
= Skatic
-Cu:unst SINT 100|Decimal | Conskant
=l Squared Square {..}
I Input
-Square.ﬁ..F‘aram IMNT 100|Decirnal
[=] Dukpuk
[Squares.Result DIMT 0|Decimal |Square
- InCuk
~Skatic
Bl i FResulkSquare DIMT 0|Decimal
* =
(B

Publication ERSC-1200 Rev 2.2 — July 2016

*

@ CONVEYLOGI X Program Ladder Logic

Call SquareA instance from FB Calculate:

E® Function Block - Calculate - Routine O] x|
[F | ELsiF| case| For |
Squarel (Param := Paramb, FEesult => FEesult3gquare):
Sum := Eesult3gquare + ParamB + ParawmC + Const:

IF Swn > 5000 THEN
Sur := 50O0OO0;
END TIF:

When SquareA instance is called (line 1) first ParamA is copied to Param. Then Square
routine executes. After that Result is copied to Result.

There is second way to call SquareA instance — first assign inputs parameters, then call FB
and after that assign outputs parameters.

E¥'Function Block - Calculate - Routine O] x|
[F] evsiF| case| romr |
SJouareld.Param = Paramd: -
Squareld () ;
Besult3quare := Sguarel.BResult:
Zum := BResultIgquare + ParamE + Paramc + Const: _J
-

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEYLOGI X Program Ladder Logic

5.0 Ladder Loqgic Instructions
5.1 Bit Instructions

Use the bit (relay-type) instructions to monitor and control the status of bits.

To enter a bit instructions use buttons form Bit tab of Instruction Bar.

Branch Leveal
Rung g onch ¥IC ¥I0 OTE OTU OTL

—| r|:|1| I'E'Il -||-| -m-| <>|<u>|<L>|oms|05H|05F|

Bit ITimera’EnunterI Enmparel Eu:umputefh“lathl MDVEHLDgicaII bodule Specific | Program Control
Instruction Description ‘
XIC enable outputs when a bit is set
X10 enable outputs when a bit is cleared
OTE set a bit
OTL set a bit (retentive)

OoTU clear bit (retentive)

ONS enable outputs for one scan each time a rung goes true
OSR set a bit for one scan each time a rung goes true

OSF set a bit for one scan each time the rung goes false

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

m ConveylLogix Programmer’s Guide

CONVEYLOGIX (®)

5.1.1 Examine If Closed (XIC)

The XIC instruction examines the data bit to see if it is set.

?
21 I I
Ak
Operands:
Type Format Description
data bit BOOL tag bit to be tested
Description:

The XIC instruction examines the data bit to see if it is set.

Execution:
Condition ‘ Action
prescan The rung-condition-out is set to false.

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

examine databit=0

data bit

y

rung-condition-out is
set to false

data bit = 1

rung-condition-out is set

to true

end

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

Examples:

LirnitSwitch
1 C

1 L

Inputs.
1 E

1 L
Left Control Port, PING

Program Ladder Logic m

If LimitSwitch is set, this enables the next

instruction (the rung-condition-out is true).

If Inputs.1 is set (indicates that an overflow has
occurred), this enables the next instruction (the

rung-condition-out is true).

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.1.2 Examine If Open (XIO)

The XIO instruction examines the data bit to see if it is cleared.

Operands:

?

1t

Operand Type Format

data bit BOOL

tag

CONVEYLOGIX (®)

Description
bit to be tested

Description:

The XIO instruction examines the data bit to see if it is cleared.

Execution:
Condition Action
prescan The rung-condition-out is set to false.

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

examios databit=0

data bit

data bit = 1

rung-condition-out is set

_| rung-condition-out is

set to true

to false

end

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

Examples:

LirnitSwitch

1t

Inputs.

1t

Left Control Port, PING

Program Ladder Logic

If LimitSwitch is cleared, this enables the next

instruction (the rung-condition-out is true).

If Inputs.1 is cleared (indicates that no overflow has
occurred), this enables the next instruction (the

rung-condition-out is true).

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

5.1.3 Output Energize (OTE)

The OTE instruction sets or clears the data bit.

7
P
S/
Operands:
Oerand Type Format Description
data bit BOOL tag bit to be set or cleared
Description:

When the OTE instruction is enabled, the controller sets the data bit. When the OTE
instruction is disabled, the controller clears the data bit.

Execution:

Condition Action

The data bit is cleared.
prescan " .
The rung-condition-out is set to false.

o The data bit is cleared.
rung-condition-in is false . _
The rung-condition-out is set to false.
The data bit is set.

The rung-condition-out is set to true.

rung-condition-in is true

Example:

When Switch is set, the OTE instruction sets (turns on) Light_1. When Switch is cleared, the
OTE instruction clears (turns off) Light_1.

‘ Switch Light 1 ‘
1 E T

|JL . |

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

® CONVEYLOG X

5.1.4 Output Latch (OTL)

The OTL instruction sets (latches) the data bit.

Program Ladder Logic

?
____(L>____
Operands:
Description
data bit BOOL tag bit to be set
Description:

When enabled, the OTL instruction sets the data bit. The data bit remains set until it is
cleared, typically by an OTU instruction. When disabled, the OTL instruction does not change

the status of the data bit.

Execution:

Condition Action

prescan

The data bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is false

The data bit is not modified.
The rung-condition-out is set to false.

rung-condition-in is true

The data bit is set.
The rung-condition-out is set to true.

Example:

When enabled, the OTL instruction sets Light_2. This bit remains set until it is cleared,

typically by an OTU instruction.

Light_2
(L} |

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

5.1.5 Output Unlatch (OTU)

The OTU instruction clears (unlatches) the data bit.

?
(U3
Operands:
Oerand Type Format Description
data bit BOOL tag bit to be cleared
Description:

When enabled, the OTU instruction clears the data bit. When disabled, the OTU instruction
does not change the status of the data bit.

Execution:

Condition Action

The data bit is not modified.
The rung-condition-out is set to false.
The data bit is not modified.

The rung-condition-out is set to false.

prescan

rung-condition-in is false

. L The data bit is cleared.
rung-condition-in is true

The rung-condition-out is set to true.

Example:

When enabled, the OTU instruction clears Light_2.

Light_2
(U3 |

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

Program Ladder Logic

® CONVEYLOG X

5.1.6 One Shot (ONS)

The ONS instruction enables or disables the remainder of the rung, depending on the status
of the storage bit.

—[oNs]—

Operands:
Operand Type Format Description
internal storage bit
storage bit BOOL tag stores the rung-condition-in from the last

time the instruction was executed

Description:

When enabled and the storage bit is cleared, the ONS instruction enables the remainder of
the rung. When disabled or when the storage bit is set, the ONS instruction disables the
remainder of the rung.

Execution:
Condition ‘ Action

The storage bit is set to prevent an invalid trigger
prescan during the first scan.

The rung-condition-out is set to false.

L The storage bit is cleared.
rung-condition-in is false -)
The rung-condition-out is set to false.

storage bt =0 storage bit is set

examine

Storage bit rung-condition-out is cleared

storage bit = 1

rung-condition-in is true

storage bit remains set

rung-condition-out is set

end

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Example:

You typically precede the ONS instruction with an input instruction because you scan the
ONS instruction when it is enabled and when it is disabled for it to operate correctly. Once
the ONS instruction is enabled, the rung-condition-in must go clear or the storage bit must be
cleared for the ONS instruction to be enabled again.

On any scan for which LimitSwitch is cleared or Storage is set, this rung has no affect. On
any scan for which LimitSwitch is set and Storage is cleared, the ONS instruction sets
Storage and the ADD instruction increments Sum by 1. As long as LimitSwitch stays set,
Sum stays the same value. The LimitSwitch must go from cleared to set again for Sum to be
incremented again.

Lirnit Switch storage ADD
1 L [1 L
1T LONS] Add
Source A Surm
]
Source B 1
Dest Sum
]

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

® CONVEYLOG X

5.1.7 One Shot Rising (OSR)

Program Ladder Logic

The OSR instruction sets or clears the output bit, depending on the status of the storage bit.

OSR
~ One Shot Rising |{0B)—
Storage Bit ?1{SB
Output Bit ? _{ }_
Operands:
Operand Type ‘ Format Description
internal storage bit
storage bit BOOL tag stores the rung-condition-in from the last
time the instruction was executed
output bit BOOL tag bit to be set
Description:

When enabled and the storage bit is cleared, the OSR instruction sets the output bit. When
enabled and the storage bit is set or when disabled, the OSR instruction clears the output bit

rung condition in

storage bit

output bit

instruction is
axacuted

instruction resets during
next scan execution

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Execution:

Condition Action

The storage bit is set to prevent an invalid trigger
prescan during the first scan.

The rung-condition-out is set to false.

The storage bit is cleared.
rung-condition-in is false The output bit is not modified.

The rung-condition-out is set to false.

storage bt =0 storage bit is set

examine

storage bit output bit is set

storage bit = 1

rung-condition-in is true

storage bit remains set

output bit is cleared

end

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

Program Ladder Logic

®) CONVEYLOG X

Example:

Each time LimitSwitch goes from cleared to set, the OSR instruction sets OutputBit and the
ADD instruction increments sum by 1. As long as LimitSwitch stays set, Sum stays the same
value. The LimitSwitch must go from cleared to set again for Sum to be incremented again.
You can use OutputBit on multiple rungs to trigger other operations.

LirnitSwitch 0sR
] [Cne Shot Rising _{DE:}_

Storage Bit StorageBit < 58
Cutput Bit DutputEﬁit_{ >_

DutputBit ADD
1 L
1 ¢ A —
Source & Sum
]
Source B 1
Dest Surm
]

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

m ConveylLogix Programmer’s Guide

5.1.8 One Shot Falling (OSF)

The OSF instruction sets or clears the output bit depending on the status of the storage bit.

OSF

One Shot Falling —{OB)—

Storage Bit ?714{SB
Output Bit ? —{ }_
Operands:
Operand Type ‘ Format Description
internal storage bit
storage bit BOOL tag stores the rung-condition-in from the last
time the instruction was executed
output bit BOOL tag bit to be set
Description:

When disabled and the storage bit is set, the OSF instruction sets the output bit. When
disabled and the storage bit is cleared, or when enabled, the OSF instruction clears the

output bit.

Execution:

rung condition in

storage bit

output bit

instruction is instruction resets during
executed next scan execution

Condition

prescan

Action

The storage bit is cleared to prevent an invalid trigger
during the first scan.

The output bit is cleared.
The rung-condition-out is set to false.

Publication ERSC-1200 Rev 2.2 — July 2016

CONVEYLOGIX (®)

® CONVEYLOG X

OPULSEROLLER

Program Ladder Logic

Condition ‘ Action

rung-condition-in is false

storage bt =0 | storage bit remains cleared

examine
storage bit

output bit is cleared

storage bit = 1

storage bit is cleared

output bit is set

(wma)

rung-condition-in is true

The storage bit is set.

The output bit is cleared.

The rung-condition-out is set to true.

Example:

Each time LimitSwitch goes from set to cleared, the OSF instruction sets OutputBit and the
ADD instruction increments Sum by 1. As long as LimitSwitch stays cleared, Sum stays the
same value. The LimitSwitch must go from set to clear again for Sum to be incremented
again. You can use OutputBit on multiple rungs to trigger other operations.

Limit=witch OSF
] F One Shat Falling |{0B)}—
Storage Bit StorageBit —<SB}—
Cutput Bit OutputBit
OLIT[CILITBH ADD
1 L
1 L A —
Source A Surm
]
Source B 1
Dest Surm
]

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.2

Timers and counters control operations based on time or the number of events.

To enter a timer/counter instruction use buttons form Timer/Counter tab of Instruction Bar.

Timer and Counter Instructions

— | 11| 1= | vom| 1oF| Rro| cru cto| Res|

Bit Timer/Caunter I En:nmparel En:nmpute.n"Mathl MD\-‘E!.-"LI:IgiCEﬂI Madule Specific | Program Contral
Instruction Description
TON time how long a timer is enabled
TOF time how long a timer is disabled
RTO accumulate time
CTU count up
CTD count down
RES reset a timer or counter

The time base for all timers is 1 msec.

Publication ERSC-1200 Rev 2.2 — July 2016

CONVEYLOGIX

OPULSEROLLER

@ CONVEYLOGI X Program Ladder Logic

5.2.1 Timer On Delay (TON)

The TON instruction is a non-retentive timer that accumulates time when the instruction is
enabled (rung-condition-in is true).

TON
— Timer On Delay | {EN}—
Timer ? (DN
Preset ? _{)_
Accum ?
Operands:
Operand ‘ Type ‘ Format Description
Timer TIMER tag TIMER structure
Preset DINT immediate how long to delay (accumulate time)
_ _ total msec the timer has counted
Accum DINT immediate o _ _
initial value is typically O
TIMER Structure
Mnemonic ‘ Data Type Description
EN BOOL _The engble_ bit indicates that the TON
instruction is enabled.
T BOOL The timing bit indicates that a timing operation
is in process
.DN BOOL The done bit is set when .ACC = .PRE.
The preset value specifies the value (1 msec
PRE DINT units) which the accumulated value must reach
before the instruction sets the .DN bit.
The accumulated value specifies the number of
ACC DINT milliseconds that have elapsed since the
TON instruction was enabled.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Description:

The TON instruction accumulates time until:

e the TON instruction is disabled
e the ACC=.PRE
The time base is always 1 msec. For example, for a 2-second timer, enter 2000 for the .PRE

value.

When the TON instruction is disabled, the .ACC value is cleared.

rung conditionin [] 1

timer enable bit {.EN) J:—i i—-i__
timer timing bit (.TT) __I i :

timer done bit (.DN) : : ; ﬁ_
preset ____I________________:._I?SE:YL_ |

[] timer did not reach | |
| | ~— PhREvalue Pl

16643

timer accumulated value (ACC) g

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned = current_time. This gets the
timer ready for the next scan.

Execution:

Condition Action

The .EN, .TT, and .DN bits are cleared.
prescan The .ACC value is cleared.

The rung-condition-out is set to false.

The .EN, .TT, and .DN bits are cleared.
rung-condition-in is false The .ACC value is cleared.

The rung-condition-out is set to false.

rung-condition-in is true

Publication ERSC-1200 Rev 2.2 — July 2016

*

Program Ladder Logic

® CONVEYLOG X

Condition Action

.DN bit =1

examine
.DN bit

.DN bit=0

examine .EN bit is set

.EN bit

.TT bit is set

ACC>= PRE

.TT bitis set)
examine

ACC = ACC + (current_time - last_time) ACC

ACC < PRE

DN is set
no .TT bitis cleared

ACC value
rolls over

ACC = 2 147 483647 rung-condition-out is set to
' N true

end

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

m ConveylLogix Programmer’s Guide

Example:

When LimitSwitch is set, Light_2 is on for 1800 msec (Timer_1 is timing). When Timer
_1.ACC reaches 1800, Light_2 goes off and Light_3 goes on. Light_3 remains on until the
TON instruction is disabled. If LimitSwitch is cleared while Timer_1 is timing, Light 2 goes

CONVEYLOGIX (®)

off.
LirnitSwitch Tk
] [- Timer On Fll_glav 1:{'(53%__
imer irmer
Preset 1800
Arccurm 1
Timer_1.TT Light_2
1 LC P
1 C (A
Tirner _1.0M Light 3
1 LC P
1 no S

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

® CONVEYLOG X

5.2.2 Timer Off Delay (TOF)

Program Ladder Logic

The TOF instruction is a non-retentive timer that accumulates time when the instruction is
enabled (rung-condition-in is false).

TOF
—| Timer Off Delay {EN)—

Timer ? (DN

Preset ? _{ >_

Accum ?
Operands:

Operand Type "Format ~ Description
Timer TIMER tag TIMER structure
Preset DINT immediate how long to delay (accumulate time)
_ _ total msec the timer has counted
Accum DINT immediate o _)
initial value is typically O

TIMER Structure

Mnemonic Data Type

Description

EN BOOL _The engble_ bit indicates that the TOF
instruction is enabled.

T BOOL _Th_e timing bit indicates that a timing operation
is in process

.DN BOOL The done bit is cleared when .ACC = .PRE.
The preset value specifies the value (1 msec

.PRE DINT units) which the accumulated value must reach
before the instruction clears the .DN bit.
The accumulated value specifies the number of

ACC DINT milliseconds that have elapsed since the TOF
instruction was enabled.

Description:

The TOF instruction accumulates time until:

e the TOF instruction is disabled
e the .ACC = .PRE

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

The time base is always 1 msec. For example, for a 2-second timer, enter 2000
value.

When the TOF instruction is disabled, the .ACC value is cleared.

rung condition in _

| [] |
timer enable bit {.EN) | |
e

timer timing bit {.TT) _ , | | L1
. . | |
timer done bit (DN} - | b i I
I I | l—l

' | OFFdelay | |

> |

"

preset L R I...r......,_|....._
| o
| |
|

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned =

current_time. This gets the timer ready for the next scan.

Publication ERSC-1200 Rev 2.2 — July 2016

for the .PRE

16650

OPULSEROLLER

® CONVEYLOG X

Execution:

Program Ladder Logic m

Condition Action

prescan

The .EN, .TT, and .DN bits are cleared.
The .ACC value is set to equal the .PRE value.

The rung-condition-out is set to false.

rung-condition-in is false

examine DN bit=0

.DN bit

.DN bit=1

examine
.EN bit

.EN bit is cleared

.TT bitis set

.TT bitis set

ACC = ACC + (current_time - last_time)

ACC value~_"°

ACC>= PRE

examine
ACC

ACC < PRE

.DN is cleared

.TT bitis cleared

rolls over

ACC = 2,147 483 647

rung-condition-out is set to
false

Y
end

rung-condition-in is true

The .EN, .TT, and .DN bits are set.

The .ACC value is cleared.

The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

m ConveylLogix Programmer’s Guide

Example:

CONVEYLOGIX (®)

When LimitSwitch is cleared, Light_2 is on for 1800 msec (Timer_1 is timing). When
Timer_1.ACC reaches 1800, Light_2 goes off and Light_3 goes on. Light_3 remains on until
the TOF instruction is enabled. If LimitSwitch is set while Timer_1 is timing, Light_2 goes off.

LirmitSwitch TOF
] [- TimerOﬁlE]r?Iav 1:{<Em§__
irmer imer
Preset 1800
Arncurn o
Timer_1.TT Light_2
1 C Pl
1 C Lo
Tirner _1.0M Light 3
1t ¢

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEYLOGI X Program Ladder Logic

5.2.3 Retentive Timer On (RTO)

The RTO instruction is a retentive timer that accumulates time when the instruction is

enabled.
RTO
— Retentive Timer On [{EN)—
Timer ? (DN
Preset ? _<)_
Accum ?
Operands:
Operand Type "Format ~ Description
Timer TIMER tag TIMER structure
Preset DINT immediate how long to delay (accumulate time)
Accum DINT immediate Fo_tgl msec the “”.‘ef has counted
initial value is typically O
TIMER Structure
Mnemonic ‘ Data Type Description
EN BOOL _The engble_ bit indicates that the RTO
instruction is enabled.
T BOOL _Th_e timing bit indicates that a timing operation
is in process
.DN BOOL The done bit indicates that .ACC = .PRE.
The preset value specifies the value (1 msec
.PRE DINT units) which the accumulated value must reach

before the instruction sets the .DN bit.

The accumulated value specifies the number of
ACC DINT milliseconds that have elapsed since the RTO
instruction was enabled.

Description:

The RTO instruction accumulates time until it is disabled. When the RTO instruction is
disabled, it retains its .ACC value. You must clear the .ACC value, typically with a RES
instruction referencing the same TIMER structure.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

The time base is always 1 msec. For example, for a 2-second timer, enter 2000 for the .PRE

value.

rung condition in - I I

timer enable bit EN J_L L I I
I
I
[

I
rung condition that controls RES instruction : !_I ! : !_I
I I
timer timing bit |.TT) __| | I I l
| | || | !
. . | | . |
timer done bit (DN} — i — i
| | o | |
I | | I
I
| | o | |
I I | : | —— presat
| |
I L,_,—'J_

16851

\

timer accumulated value | ACC) _I-l" +

0 timer did not reach PRE value

A timer runs by subtracting the time of its last scan from the time now:
ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned = current_time. This gets the

timer ready for the next scan.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEYLOGI X Program Ladder Logic

Execution:

Condition Action

The .EN, .TT, and .DN bits are cleared.
prescan The .ACC value is not modified.

The rung-condition-out is set to false.
The .EN and .TT bits are cleared.

The .DN bit is not modified.

The .ACC value is not modified.

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

examine DN bit=1

.DN bit

.DNbit=0

.EN bit is set

.TT bit is set

.TT bitis set)
examine

ACC

ACC = ACC + (current_time - last_time)

ACC < PRE

.DN is set

no .TT bitis cleared

ACC value
rolls over

ACC = 2.147.483.647 rung-condition-out is set to
’ Ol X true

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Example:

When LimitSwitch_1 is set, Light_1 is on for 1800 msec (Timer_1 is timing). When
Timer_1.ACC reaches 1800, Light_1 goes off and Light_2 goes on. Light_2 remains until
Timer_1 is reset. If LimitSwitch_2 is cleared while Timer_1 is timing, Light_1 remains on.

When LimitSwitch_2 is set, the RES instruction resets Timer_1 (clears status bits and .ACC

value).
LimitSwitch_1 BT
] [_l_.RetentiveTir_lrj.er(:lneI :{{Emﬁ_—
imer imer
Preset 1800
Arccurm o
Tirner 1.TT Light 1
1 LC P
1 T L
Timer_1.0M Light 2
1-F {3
Lirnit Switch 2 Timer 1
] F (RES)

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

® CONVEYLOG X

5.2.4 Count Up (CTU)

The CTU instruction counts upward.

Program Ladder Logic

CTU
= Count Up —(CU)—
Counter ? DN
Preset ? —< }_
Accum ?
Operands:
Operand ‘ Type ‘ Format Description
Counter COUNTER | tag COUNTER structure
Preset DINT immediate how high to count
_ _ number of times the counter has counted
Accum DINT immediate o _ _
initial value is typically O
COUNTER Structure
Mnemonic ‘ Data Type ‘ Description
cu BOOL The com_Jnt up enable bit indicates that the CTU
instruction is enabled.
.DN BOOL The done bit indicates that .ACC = .PRE.
The overflow bit indicates that the counter
exceeded the upper limit of 2,147,483,647. The
.0V BOOL
counter then rolls over to -2,147,483,648 and
begins counting up again.
The underflow bit indicates that the counter
exceeded the lower limit of -2,147,483,648. The
.UN BOOL
counter then rolls over to 2,147,483,647 and
begins counting down again.
The preset value specifies the value which the
PRE DINT accumulated value must reach before the
instruction sets the .DN bit.
ACC DINT The a_lgcumulat_ed valug specifies the number of
transitions the instruction has counted.
Description:

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

m ConveylLogix Programmer’s Guide CONVEY LOG | X @

When enabled and the .CU bit is cleared, the CTU instruction increments the counter by one.
When enabled and the .CU bit is set, or when disabled, the CTU instruction retains its .ACC

value.

rung condition in _,—m ._.—‘_[__I_L

| | ' | |
| L V ;
count-up enable bit (.CU) J L} u M

I
I
|

: ‘é | . |
peset osvsboomsmoosshosendosenss —I—[—

t

count-up done bit {.DN) , ' ? | |
: ; |

|

counter accumulated value (ACC) —

The accumulated value continues incrementing, even after the .DN bit is set. To clear the
accumulated value, use a RES instruction that references the counter structure or write 0 to

the accumulated value.

Publication ERSC-1200 Rev 2.2 — July 2016

*

® CONVEYLOG X

Execution:

prescan

Program Ladder Logic

Condition Action

The .CU bit is set to prevent invalid
increments during the first program scan.

The rung-condition-out is set to false.

rung-condition-in is false

The .CU bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true

CUbit=0

examine
.CU bit

.CU bit is set

ACC=ACC+1

ACC value
rolls over

.CUbit=1

no

UNDIit=0

examine
.UN bit

.OV bit

examine

.UN bitis cleared | .UNDbit=1

examir_be
.DN bit is cleared {UN bit

UNDit=0

OVbit=0

A
|.ov bit is set

ACC >= PRE

examine
ACC

ACC < .PRE

I.DN bit is cleared | I.DN bit i; set

rung-condition-cut is set to
true

end

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

m ConveylLogix Programmer’s Guide CONVEY LOG | X @

Example:

After LimitSwitch_1 goes from disabled to enabled 10 times, the .DN bit is set and Light_1
turns on. If LimitSwitch_1 continues to go from disabled to enabled, Counter_1 continues to
increment its count and the .DN bit remains set. When LimitSwitch_2 is enabled, the RES
instruction resets Counter_1 (clears the status bits and the .ACC value) and Light_1 turns off.

LimitSwitch_1 CTL
] [Count Up o ——
Counter Counter 1 —{DN}—
Freset 10
Accum]
Counter_1.0M Light_1
1 LC P
1 C (A
LimmitSwitch_2 Counter_1
1 F (RESY

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEYLOGI X Program Ladder Logic m

5.2.5 Count Down (CTD)

The CTD instruction counts downward.

CTD
= Count Down —(CD}—

Counter ? —{DN}—

Preset ?

Accum ?
Operands:

Operand Type Format ~ Description

Counter COUNTER | tag COUNTER structure
Preset DINT immediate how low to count

_ _ number of times the counter has counted
Accum DINT immediate o _ _

initial value is typically O

COUNTER Structure

Mnemonic Data Type Description

The count down enable bit indicates that the
CTD instruction is enabled.

.DN BOOL The done bit indicates that .ACC = .PRE.

The overflow bit indicates that the counter
exceeded the upper limit of 2,147,483,647. The

.CU BOOL

-0V BOOL counter then rolls over to -2,147,483,648 and
begins counting up again.
The underflow bit indicates that the counter

UN BOOL exceeded the lower limit of -2,147,483,648. The

counter then rolls over to 2,147,483,647 and
begins counting down again.

The preset value specifies the value which the
.PRE DINT accumulated value must reach before the
instruction sets the .DN bit.

The accumulated value specifies the number of

ACC DINT transitions the instruction has counted.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

Description:

The CTD instruction is typically used with a CTU instruction that references the same counter

structure.

When enabled and the .CD bit is cleared, the CTD instruction decrements the counter by
one. When enabled and the .CD bit is set, or when disabled, the CTD instruction retains its
.ACC value.

rung condition in _,—|_,—l_,—|_'_\

count-down enable bit { CD) _'—\J_l_]_l_'_l

count-down done bit (.DN)

_]

ol
R R
]

counter accumulated value (LACC)

M
N
|
|

preset

The accumulated value continues decrementing, even after the .DN bit is set. To clear the
accumulated value, use a RES instruction that references the counter structure or write 0 to

the accumulated value.

Publication ERSC-1200 Rev 2.2 — July 2016

*

@ CONVEY LOG I x Program Ladder Logic [ENex!

Execution:

Condition Action

The .CD bit is set to prevent invalid
prescan decrements during the first program scan.

The rung-condition-out is set to false.

o The .CD bit is cleared.
rung-condition-in is false
The rung-condition-out is set to false.

rung-condition-in is true

CDbit=0 .CD bit is set

ACC value
rolls over

examine
.CD bit

ACC = ACC-1

.CDbit=1 no

OV bitis cleared | .OVbit=1

examine

.DN bitis cleared JUN bit

OVbit=0

UNDIit=0 OVbit=0

examine
.OV bit

examine
.UN bit

A

|.u~ bit is set

ACC >= PRE

examine
ACC

ACC < .PRE

I.DN bit is cleared | I.DN bit i; set

rung-condition-cut is set to
true

end

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

Example:

A conveyor brings parts into a buffer zone. Each time a part enters, LimitSwitch_1 is enabled
and Counter_1 increments by 1. Each time a part leaves, LimitSwitch_2 is enabled and
Counter_1 decrements by 1. If there are 100 parts in the buffer zone (Counter_1.DN is set),
Conveyor_A turns on and stops the conveyor from bringing in any more parts until the buffer
has room for more parts.

CONVEYLOGIX (®)

OPULSEROLLER

Publication ERSC-1200 Rev 2.2 — July 2016

Festart Counter 1
] F {(RES)
LimitSwitch_1 CTL
] [. Cnunl:t:Up 1:{{35;—
ounter ounter
Freset 100
Arccum]
Limit=witch 2 CTh
] [. Cnuntéﬁlnwn 1:‘({3%_—
ounter ounter
Preset 100
Arccum]
Counter 1.0M Conveyor A
1 D

® CONVEYLOG X

Program Ladder Logic

5.2.6 Reset (RES)

The RES instruction resets a TIMER or COUNTER structure.

?
——<{RES)}—
Operands:
Operand Type Format Description
TIMER
structure tag structure to reset
COUNTER

Description:

When enabled the RES instruction clears these elements:

When Using a Res

. The Instruction Clears
Instruction For a

ACC value
TIMER _
control status bits
ACC value
COUNTER _
control status bits

ATTENTION Because the RES instruction clears the .ACC value, .DN bit and .TT bit, do not
use the RES instruction to reset a TOF timer.

Execution:

Condition ‘ Action

prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.

S The RES instruction resets the specified structure.
rung-condition-in is true

The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

103

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Example:
Example Description
Tirner 1 When enabled, reset Timer_1.
{RES}
Counter 1 When enabled, reset Counter_1.
{RES}

Publication ERSC-1200 Rev 2.2 — July 2016

*

@ CONVEY LOGI X Program Ladder Logic [l

5.3 Compare Instructions

The compare instructions let you compare values by using an expression or a specific
compare instruction.

To enter a timer/counter instruction use buttons form Timer/Counter tab of Instruction Bar.

— | | =t | um | wea| eau| nea| Les| orr| Lea| ceal

Bit | Timer/Counter Compare | En:nmpute.n"Mathl MDVE;"LDgicaII kadule Spec:ifin::l Pragram En:nntrn:nll
Instruction Description ‘
LIM test whether one value is between two other values
MEQ pass two values through a mask and test whether they are

equal
EQU test whether two values are equal
NEQ test whether one value is not equal to a second value
LES test whether one value is less than a second value
GRT test whether one value is greater than a second value
LEQ test whether one value is less than or equal to a second value
GEQ ;[/zsla\e/}vhether one value is greater than or equal to a second

You can compare values of different data types, such as floating point and integer.

For relay ladder instructions, bold data types indicate optimal data types. An instruction
executes faster and requires less memory if all the operands of the instruction use the same
optimal data type, typically DINT.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.3.1 Limit (LIM)

CONVEYLOGIX (®)

The LIM instruction tests whether the Test value is within the range of the Low Limit to the

High Limit.
LIM
- Limit Test (CIRC) |-
Low Limit ?
?
Test ?
?
High Limit ?
?
Operands:
Operand Type Format Description
SINT) _
o immediate .
Low limit INT . value of lower limit
al
DINT g
SINT) _
immediate
Test INT value to test
tag
DINT
SINT) _
) o immediate o
High limit INT) value of upper limit
a
DINT g

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The LIM instruction tests whether the Test value is within the range of the Low Limit to the

High Limit.

If Low Limit

And Test Value Is

The Rung-condition-out Is

equal to or between limits true
< High Limit

not equal to or outside limits false

equal to or outside limits true
2 High Limit

not equal to or inside limits false

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEYLOGIX Program Ladder Logic [0y

Signed integers “roll over” from the maximum positive number to the maximum negative
number when the most significant bit is set. For example, in 16-bit integers (INT type), the
maximum positive integer is 32767, which is represented in hexadecimal as 16#7FFF (bits O
through 14 are all set). If you increment that number by one, the result is 16#8000 (bit 15 is
set). For signed integers, hexadecimal 16#8000 is equal to -32768 decimal. Incrementing
from this point on until all 16 bits are set ends up at 16#FFFF, which is equal to -1 decimal.

This can be shown as a circular number line (see the following diagrams). The LIM
instruction starts at the Low Limit and increments clockwise until it reaches the High Limit.
Any Test value in the clockwise range from the Low Limit to the High Limit sets the rung-
condition-out to true. Any Test value in the clockwise range from the High Limit to the Low
Limit sets the rung-condition-out to false.

Low Limit < High Limit Low Limit 2 High Limit

The instruction is true if the test value is The instruction is true if the test value is equal
equal to or between the low and high limit. to or outside the low and high limit.

0 i

low limit
high limit

-1 ,L._LL”
f/
| |
\ \
high limit
low limit

- n+1_) IT:n .
: T
n = maximum value :
n =maximum value
\ P

——

S
—

Execution:

Condition Action

| prescan The rung-condition-out is set to false.

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

Condition Action

rung-condition-in is false

OF’ULSEROLLER

CONVEYLOGIX (®)

The rung-condition-out is set to false.

rung-condition-in is true

i .
evaluate comparison s true

limit

comparison is false

rung-condition-out is set

rung-condition-out is set
to true

to false

Example 1:

Low Limit < High Limit:

When 0 < Value = 100, set Light_1. If Value < 0 or Value >100, clear Light_1.

Example 2:

Low Limit = High Limit:

LM Light_1
L Limit Test (CIRC) -
Lo Lirmit a
Test “Walue
0
High Limit 100

When Value = 0 or Value < -100, set Light_1. If Value < 0 or Value >-100, clear Light_1.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOGI X Program Ladder Logic [Ree)

LM Light_1
L Limit Test (CIRC) -
Lo Lirmit a
Test “Walue
0
High Lirnit -100

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

5.3.2 Mask Equal to (MEQ)

The MEQ instruction passes the Source and Compare values through a Mask and compares

the results.
MEQ
- Mask Equal =
Source ?
?
Mask ?
?
Compare ?
?
Operands:
Operand ‘ Type ‘ Format Description
SINT _ _
immediate _
Source INT) value to test against Compare
a
DINT 9
SINT _ _
immediate _) _
Mask INT . defines which bits to block or pass
a
DINT 9
SINT _ _
immediate i
Compare INT) value to test against Source
a
DINT J

If you enter a SINT or INT tag, the value converts to a DINT value by zero-fill.

Description:

A “1” in the mask means the data bit is passed. A “0” in the mask means the data bit is
blocked. Typically, the Source, Mask, and Compare values are all the same data type.

If you mix integer data types, the instruction fills the upper bits of the smaller integer data
types with Os so that they are the same size as the largest data type.

Entering an Immediate Mask Value:

When you enter a mask, the programming software defaults to decimal values. If you want to
enter a mask using another format, precede the value with the correct prefix.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I x Program Ladder Logic kK

Prefix ‘ Description ‘ Example

2# binary 2#00110011
8# octal 8#16

16# hexadecimal 16#0FOF
Execution:

Condition Action

prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.

yes I

rung-condition-out is set
to true

masked source =
masked compare

rung-condition-in is true

rung-condition-out is set
to false

Example 1:

If the masked value_1 is equal to the masked value_2, set light_1. If the masked value_1 is
not equal to the masked value_2, clear light_1. This example shows that the masked values
are equal. A 0 in the mask restrains the instruction from comparing that bit (shown by x in the

example).
value_7|0|1|0|1|0|1|0|1|1|1|l|1|1|1|1|1| value_2|0|1|0|1|0|1|0|I|1|1|1|1|0|0|D|0|
mask_1|1|1|1|1|1|1|1|1|1|1|1|1|0|0|D|0| mask_l|1|1|l|1|1|1|1|1|1|1|1|1|0|0|D|0|

Maskedvalue_l|l)|l|0|1|D|1|0|1|1|1|1|1|x|x|x|x| Maskedva!ue_2|0|1|DII|0|1|0|l|1|1|1|1|x|x|x|x|

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

MED Light 1

- haszk Equal -
Source value 1
201011111
hlask mask_1
Z#1111111111110000
Compare value 2
28#0101010111110000

Example 2:

If the masked value_1 is equal to the masked value_2, set light_1. If the masked value_1 is
not equal to the masked value_2, clear light_1. This example shows that the masked values
are not equal. A 0 in the mask restrains the instruction from comparing that bit (shown by x in
the example).

vafue_z[0|1|o|1|0|1|0|1|1|1|1|1|1|1|1|1| valt.e_2|0|1|0|1|0|1|0|1|1|1|1|1|D|0|0|0|
mask_7|0|o|o|0|0|o|o|o|0|o|o|o|1|1|1|1| mask_llUlOlOlD|0|0|0|0|D|0|0|0|1|1|1|1|
Maskedva!ue_?lx|x|x|x|x|x|x|x|x|x|x|x|1|1|1|1l Maskedvah.e_2|xlxlxlx|x|x|x|x|x|x|x|x|0|0|0|0|
MEQ Light_1
- haszk Equal -
Source value 1
2010010111111 111
hlask mask_1
2E0000000000001111
Compare value 2
201010101111 10000

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Ladder Logic

5.3.3 Equal to (EQU)

The EQU instruction tests whether Source A is equal to Source B.

EQU
- Equal =
Source A ?
?
Source B ?
?
Operands:
Operand Type Format Description
SINT _ _ _
immediate value to test against
Source A INT
tag Source B
DINT
SINT _ _ .
immediate value to test against
Source B INT
tag Source A
DINT

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

Use the EQU instruction to compare two numbers.

Execution:

Condition Action ‘
prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

Publication ERSC-1200 Rev 2.2 — July 2016

113

ConveylLogix Programmer’s Guide

Condition

rung-condition-in is true

yes

OF’ULSEROLLER

CONVEYLOGIX (®)

Action

rung-condition-out is set
to false

rung-condition-out is set

n

y

Example:

If ValueA is equal to ValueB, set Light_1. If ValueA is not equal to ValueB, clear Light_1.

EQL

- Equal
Source A Yalued,
1]

Source B “YalueB
1]

Publication ERSC-1200 Rev 2.2 — July 2016

T

OPULSEROLLER

@ CONVEY LOG I X Program Ladder Logic

5.3.4 Not Equal to (NEQ)

The NEQ instruction tests whether Source A is not equal to Source B.

NEQ
— Not Equal -
Source A ?
?
Source B ?
?
Operands:
Operand Type Format Description
SINT _ _ _
immediate value to test against
Source A INT
tag Source B
DINT
SINT _ _ _
immediate value to test against
Source B INT
tag Source A
DINT

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The NEQ instruction tests whether Source A is not equal to Source B.

Execution:

Condition Action ‘
prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

Condition

rung-condition-in is true

Action

CONVEYLOGIX (®)

yes

rung-condition-out is set
to false

rung-condition-out is set
to true

Example:

If ValueA is not equal to ValueB, set Light_1. If ValueA is equal to ValueB, clear Light_1.

Publication ERSC-1200 Rev 2.2 — July 2016

MEL Light_1
- Mot Equal L
Source A Walued
0
Source B “YalueB
0

OPULSEROLLER

® CONVEYLOG X

5.3.5 Less Than (LES)

The LES instruction tests whether Source A is less than Source B.

Program Ladder Logic

LES
— Less Than (A<B) |
Source A ?
?
Source B ?
?
Operands:
Operand Type Format Description
SINT _ _ _
immediate value to test against
Source A INT
tag Source B
DINT
SINT _ _ .
immediate value to test against
Source B INT
tag Source A
DINT

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The LES instruction tests whether Source A is less than Source B.

Execution:

Condition

prescan

Action

The rung-condition-out is set to false.

rung-condition-in is false

The rung-condition-out is set to false.

Publication ERSC-1200 Rev 2.2 — July 2016

117

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

Condition

rung-condition-in is true

Action

Source A <

yes

CONVEYLOGIX (®)

Scurce B

rung-condition-out is set

rung-condition
to true

-out is set

to false

y

Example:

If ValueA is less than ValueB, set Light_1. If ValueA is greater than or equal to ValueB, clear

Light_1.

LES
 Less Than (A=B)

Light_1
Tt

Source A “Walued,
1]
Source B “alueB
1]

Publication ERSC-1200 Rev 2.2 — July 2016

WA

OPULSEROLLER

@ CONVEY LOG I x Program Ladder Logic [E&Ke

5.3.6 Greater Than (GRT)

The GRT instruction tests whether Source A is greater than Source B.

GRT
—| Greater Than (A>B) |-
Source A ?
?
Source B ?
?
Operands:
Operand Type Format Description
SINT _ _ _
immediate value to test against
Source A INT
tag Source B
DINT
SINT _ _ _
immediate value to test against
Source B INT
tag Source A
DINT

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The GRT instruction tests whether Source A is greater than Source B.

Execution:

Condition Action ‘
prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

Condition

Source A >

yes

CONVEYLOGIX (®)

Action

Scurce B

rung-condition-in is true

rung-condition-out is set

to true

rung-condition-out is set

to false

y

Example:

If ValueA is greater than ValueB, set Light_1. If ValueA is less than or equal to ValueB, clear

Light_1.
GRT Light 1
L Greater Than (A=E) {: :-‘
Source A Walued
]
Source B “alueB
]

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I x Program Ladder Logic [¥X!

5.3.7 Less Than or Equal to (LEQ)

The LEQ instruction tests whether Source A is less than or equal to Source B.

LEQ
- LessThanorEgl |-
Source A ?
?
Source B ?
?
Operands:
Operand Type Format Description
SINT _ _ _
immediate value to test against
Source A INT
tag Source B
DINT
SINT _ _ _
immediate value to test against
Source B INT
tag Source A
DINT

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The LEQ instruction tests whether Source A is less than or equal to Source B.

Execution:

Condition Action ‘
prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

Condition

Source A <=

yes

CONVEYLOGIX (®)

Action

rung-condition-out is set

Scurce B

rung-condition-in is true

rung-condition-out is set

to true

to false

y

Example:

If ValueA is less than or equal to ValueB, set Light_1. If ValueA is greater than ValueB, clear

Light_1.
LED Light 1
L | Less Than ar Eqgl £
Source A “Walued,
1]
Source B “alueB
1]

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Ladder Logic

5.3.8 Greater than or Equal to (GEQ)

The GEQ instruction tests whether Source A is greater than or equal to Source B.

GEQ
— GrrThanorEgql |
Source A ?
?
Source B ?
?
Operands:
Operand Type Format Description
SINT _ _ _
immediate value to test against
Source A INT
tag Source B
DINT
SINT] . .
immediate value to test against
Source B INT
tag Source A
DINT

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The LEQ instruction tests whether Source A is less than or equal to Source B.

Execution:

Condition Action ‘
prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

Publication ERSC-1200 Rev 2.2 — July 2016

123

Condition

rung-condition-in is true

ConveylLogix Programmer’s Guide

Action

Source A >=

yes

OF’ULSEROLLER

CONVEYLOGIX (®)

rung-condition-out is set

Scurce B

rung-condition-out is set

to true

to false

y

Example:

If ValueA is greater than or equal to ValueB, set Light_1. If ValueA is less than ValueB, clear

Light_1.

SEQ

Source A

Source B

L1 Grir Than or Egl

“alued,
1]
“alueB
1]

Light_1
T

Publication ERSC-1200 Rev 2.2 — July 2016

R

OPULSEROLLER

@ CONVEY LOGI X Program Ladder Logic [k

54 Compute/Math Instructions

The compute/math instructions evaluate arithmetic operations using an expression or a
specific arithmetic instruction.

To enter a compute/math instruction use buttons form Compute/Math tab of Instruction Bar.

—| r|:|1| I'E'Il ADDl sua| ru1LIL| D|v| MODl NEGl AEIS|

Bit | Timer/Counter | Compare Compute/Math | Move/Logical | Module Speific | Pragram Contral
Instruction Description ‘
ADD add two values
SUB subtract two values
MUL multiply two values
DIV divide two values
MOD determine the remainder after one value is divided by another
NEG take the opposite sign of a value
ABS take the absolute value of a value

For relay ladder instructions, bold data types indicate optimal data types. An instruction
executes faster and requires less memory if all the operands of the instruction use the same
optimal data type, typically DINT.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

541 Add(ADD)

CONVEYLOGIX (®)

The ADD instruction adds Source A to Source B and places the result in the Destination.

ADD

Add
Source A

Source B

Dest

Operands:
Description
SINT _ _
immediate
Source A INT . value to add to Source B
a
DINT J
A SINT or INT tag converts to a DINT value by sign-extension.
SINT _ _
immediate
Source B INT . value to add to Source A
a
DINT J
A SINT or INT tag converts to a DINT value by sign-extension.
SINT
Destination INT tag tag to store the result
DINT
Description:

The ADD instruction adds Source A to Source B and places the result in the Destination.

Execution:

Condition Action

prescan

The rung-condition-out is set to false.

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

Destination = Source A + Source B The
rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

®) CONVEYLOG X

Example:

Program Ladder Logic

If LimitSwitch is set, add ValueA to ValueB and place the result in Result.

LirnitSwitch ADD
1 L[

1 Ldd

Source A Yalued

]

Source B “alueB

]

Dest Hesult

]

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

127

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.4.2 Subtract (SUB)

CONVEYLOGIX

The SUB instruction subtracts Source B from Source A and places the result in the

Destination.
SuB
— Subtract 8
Source A ?
?
Source B (s
?
Dest ?
?
Operands:
Operand Format Description
SINT _ diat
Immediate value from which to subtract
Source A INT tag Source B
DINT
A SINT or INT tag converts to a DINT value by sign-extension.
SINT _ _
immediate
Source B INT . value to subtract from Source A
a
DINT 9
A SINT or INT tag converts to a DINT value by sign-extension.
SINT
Destination INT tag tag to store the result
DINT
Description:
The SUB instruction subtracts Source B from Source A and places the result in the
Destination.
Execution:

Condition Action

The rung-condition-out is set to false.

prescan

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

Destination = Source B - Source A
The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

®

®) CONVEYLOG X

Example:

If LimitSwitch is set, subtract ValueB from ValueA and place the result in Result.

Program Ladder Logic

LimitSWitEh SUB
] [Subtract

Source A “alued,

]

Source B “alueB

1

Dest Result

]

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

129

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.4.3 Multiply (MUL)

CONVEYLOGIX (®)

The MUL instruction multiplies Source A with Source B and places the result in the

Destination.
MUL
— Multiply L
Source A ?
?
Source B ?
?
Dest ?
?
Operands:
Operand Format Description
SINT _ _
immediate o
Source A INT . value of the multiplicand
a
DINT J
A SINT or INT tag converts to a DINT value by sign-extension.
SINT _ _
immediate o
Source B INT . value of the multiplier
a
DINT 9
A SINT or INT tag converts to a DINT value by sign-extension.
SINT
Destination INT tag tag to store the result
DINT
Description:
The MUL instruction multiplies Source A with Source B and places the result in the
Destination.
Execution:

Condition Action

The rung-condition-out is set to false.

prescan

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

Destination = Source B x Source A
The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

®) CONVEYLOG X

Example:

Program Ladder Logic

If LimitSwitch is set, multiply ValueA by ValueB and place the result in Result.

LirnitSwitch ML
] [hultiply

Source A Walued

1]

Source B “WalueB

1]

Dest Result

1]

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

131

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.4.4 Divide (DIV)

The DIV instruction divides Source A by Source B and places the result in the Destination.

CONVEYLOGIX (®)

DIV
= Divide -
Source A T
?
Source B ?
?
Dest ?
?
Operands:
Operand Format Description
SINT _ _
immediate .
Source A INT . value of the dividend
a
DINT J
A SINT or INT tag converts to a DINT value by sign-extension.
SINT _ _
immediate .
Source B INT . value of the divisor
a
DINT J
A SINT or INT tag converts to a DINT value by sign-extension.
SINT
Destination INT tag tag to store the result
DINT
Description:

DIV instruction truncates the result.

Type Value

Operand

Source A DINT 5
Source B DINT 3
Destination DINT 1

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

® CONVEYLOG X

Program Ladder Logic k]

If Source B (the divisor) is zero, DIV instruction doesn’t evaluate and the next runtime error

OcCcurs:

#103 — Divide by Zero

If ConveyLogix Programmer is in Debug mode, runtime errors are shown in Qutput window.

Execution:

Condition

prescan

Action

The rung-condition-out is set to false.

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

Destination = Source A / Source B

The rung-condition-out is set to true.

Example:

If LimitSwitch is set, divide ValueA by ValueB and place the result in Result.

If ValueB (the divisor) is zero, DIV instruction doesn’t evaluate.

Limit=witch N
1 L i
1 F Divide —
Source A “Walued
1]
Source B “alueB
1]
Dest Fesult
1]

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.4.5 Modulo (MOD)

The MOD instruction divides Source A by Source B and places the remainder in the

CONVEYLOGIX (®)

Destination.
MOD
— Modulo =
Source A ?
?
Source B ?
?
Dest ?
?
Operands:
Operand Type Format Description
SINT _ _
immediate .
Source A INT . value of the dividend
a
DINT 9
A SINT or INT tag converts to a DINT value by sign-extension.
SINT _ _
immediate o
Source B INT . value of the divisor
a
DINT 9
A SINT or INT tag converts to a DINT value by sign-extension.
SINT
Destination INT tag tag to store the result
DINT
Description:

If Source B (the divisor) is zero, Source A is moved to Destination.

Execution:

Condition ‘ Action

The rung-condition-out is set to false.

prescan

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

Destination = Source A — (TRN (Source A/ Source B) *
Source B)

The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

®) CONVEYLOG X

Example:

If LimitSwitch is set, divide ValueA by ValueB and place the remainder in Result. In this

example, 3 goes into 10 three times, with a remainder of 1.

Program Ladder Logic

LimitSwitch MDD
] [Modulo

Source A “Walued

10

Source B “alueB

3

Dest Hesult

1

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

135

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.4.6 Negate (NEG)

The NEG instruction changes the sign of the Source and places the result in the Destination.

CONVEYLOGIX (®)

NEG
— Negate E5
Source ?
?
Dest (s
?
Operands:
Operand Type Format Description
SINT _ _
immediate
Source INT value to negate
tag
DINT
A SINT or INT tag converts to a DINT value by sign-extension.
SINT
Destination INT tag tag to store the result
DINT
Description:
If you negate a negative value, the result is positive. If you negate a positive value, the result
is negative.
Execution:

Condition ‘ Action

The rung-condition-out is set to false.

prescan

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

Destination = 0 — Source

The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

137

®) CONVEYLOG X

Example:

Program Ladder Logic

If LimitSwitch is set, change the sign of ValueA and place the result in Result.

Limit=witch MNES
1 L
1 F Megate -
Source “alued,
]
Dest Result
]

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveyLogix Programmer’s Guide CONVEY L LOGIX @

5.4.7 Absolute Value (ABS)

The ABS instruction takes the absolute value of the Source and places the result in the
Destination.

ABS
—| Absolute Value |
Source ?
?
Dest ?
?
Operands:
Operand ‘ Type ‘ Format Description
SINT _ diat
immediate i
Source A INT value of which to take the
tag absolute value
DINT
A SINT or INT tag converts to a DINT value by sign-extension.
SINT
Destination INT tag tag to store the result
DINT
Description:

The ABS instruction takes the absolute value of the Source and places the result in the
Destination.

Execution:

Condition Action

prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.

S Destination = |Source|
rung-condition-in is true

The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

139

®) CONVEYLOG X

Example:

Program Ladder Logic

If LimitSwitch is set, place the absolute value of ValueA into Result. In this example, the

absolute value of negative four is positive four.

LirnitSwitch ABS
] [Absalute Walue |
Source “Walued,
-4
Dest Hesult
4

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG I X @

55 Move/Logical Instructions

To enter a move/logical instruction use buttons form Move/Logical tab of Instruction Bar.

— | it |t | mow| vl s | or | xor| mot| cir]

Bit | Timera’EDunterl Eu:umparel Computetdath pove/Logical | b odule Speu:ifiu:l Program Eu:untru:ull

The move instructions modify and move bits.

Instruction Description

MOV copy a value

MVM copy a specific part of an integer
CLR clear a value

The logical instructions perform operations on bits.

Instruction Description

Bitwise AND bitwise AND operation

Bitwise OR bitwise OR operation

Bitwise XOR bitwise, exclusive OR operation
Bitwise NOT bitwise NOT operation

You can mix data types, but loss of accuracy and the instruction takes more time to execute.

Bold data types indicate optimal data types. An instruction executes faster if all the operands
of the instruction use the same optimal data type, typically DINT.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I x Program Ladder Logic BEFEI

5.5.1 Move (MOV)

The MOV instruction copies the Source to the Destination. The Source remains unchanged.

MOV
— Maove =
Source ?
?
Dest ?
?
Operands:
Operand Format Description
SINT _ _
immediate
Source INT . value to move (copy)
a
DINT J
A SINT or INT tag converts to a DINT value by sign-extension.
SINT
Destination INT tag tag to store the result
DINT

Description:

The MOV instruction copies the Source to the Destination. The Source remains unchanged.

Execution:
prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.

S The instruction copies the Source into the Destination.
rung-condition-in is true

The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

Example:

If LimitSwitch is set, move the data in ValueA to Result.

CONVEYLOGIX (®)

Publication ERSC-1200 Rev 2.2 — July 2016

Limit=witch b
1 L
1 ke
Source Walued,
]
Dest Result
]

OPULSEROLLER

@ CONVEY LOG | x Program Ladder Logic BEFE!

55.2 Masked Move (MVM)

The MVM instruction copies the Source to a Destination and allows portions of the data to be

masked.
MVM
- Masked Move |-
Source ?
?
Mask ?
?
Dest ?
?
Operands:
Operand Type Format Description
SINT _ _
immediate
Source INT value to move
tag
DINT
A SINT or INT tag converts to a DINT value by zero-fill.
SINT _ _
immediate _ _
Mask INT . which bits to block or pass
a
DINT 9
A SINT or INT tag converts to a DINT value by zero-fill.
SINT
Destination INT tag tag to store the result
DINT
Description:

The MVM instruction uses a Mask to either pass or block Source data bits. A “1” in the mask
means the data bit is passed. A “0” in the mask means the data bit is blocked.

If you mix integer data types, the instruction fills the upper bits of the smaller integer data
types with Os so that they are the same size as the largest data type.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

Entering an Immediate Mask Value:

When you enter a mask; the programming software defaults to decimal values. If you want to
enter a mask using another format, precede the value with the correct prefix.

‘ Description ‘ Example

Prefix

2# binary 2#00110011
8t octal 8#16

16# hexadecimal 16#0FOF
Execution:

Condition ‘ Action

prescan

The rung-condition-out is set to false.

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

The instruction passes the Source through the Mask and
copies the result into the Destination. Unmasked bits in the
Destination remain unchanged.

The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

CONVEYLOGIX (®)

OPULSEROLLER

@ CONVEY LOG I X Program Ladder Logic e¥LS

Example:

If LimitSwitch is set, copy data from ValueA to Result, while allowing data to be masked (a 0

masks the data in ValueA).

Limit=witch Il
] [hMasked Move —
Source wWalued
2010010101 0101010101010101010101
hlask hdask
2811110000111100001 111000011 110000
Dest Feszult
ZTmmtrrrttrrrT 111111

The shaded boxes show the bits that changed in Result.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

CONVEYLOGIX (®)

5.5.3 Bitwise AND (AND)

The AND instruction performs a bitwise AND operation using the bits in Source A and Source

B and places the result in the Destination.

AND
. Bitwise AND =
Source A ?
?
Source B ?
?
Dest ?
?
Operands:
Operand Format Description
SINT _ _
immediate _
Source A INT . value to AND with Source B
a
DINT g
A SINT or INT tag converts to a DINT value by zero-fill.
SINT _ _
immediate _
Source B INT . value to AND with Source A
a
DINT 9
A SINT or INT tag converts to a DINT value by zero-fill.
SINT
Destination INT tag tag to store the result
DINT
Description:

When enabled, the instruction evaluates the AND operation:

If the Bit In And the Bit In The Bit In the
Source A ls Source B Is: Destination Is:
0 0 0
0 1 0
1 0 0
1 1 1

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | x Program Ladder Logic ¥

If you mix integer data types, the instruction fills the upper bits of the smaller integer data
types with Os so that they are the same size as the largest data type.

Execution:

Condition

prescan

‘ Action

The rung-condition-out is set to false.

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

The instruction performs a bitwise AND operation.

The rung-condition-out is set to true.

Example:

When enabled, the AND instruction performs a bitwise AND operation on ValueA and ValueB
and places the result in the Result.

SourceA|O|0O|0|0|Of0D|0O

SoureB|0|0|0O|0OfOfO|O

Dest|D)0|0|0|O|O|0

Limit=witch ARD
] [Bitwise AMD -
Source A “Walued
ZE0000000000000101010101 0111111111
Source B “alueB
28000000000000111111110000000000040
Dest Result
Z#00000000000001010101 0000000000040

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.5.4 Bitwise OR (OR)

The OR instruction performs a bitwise OR operation using the bits in Source A and Source B

CONVEYLOGIX (®)

and places the result in the Destination.

Operands:

Operand

Source A

SINT
INT
DINT

OR
Bitwise Inclusive OR
Source A ?
?
Source B ?
?
Dest ?
?

Format

immediate

tag

Description

value to OR with Source B

A SINT or INT tag

converts to a DINT

value by zero-fill.

Source B

SINT
INT
DINT

immediate

tag

value to OR with Source A

A SINT or INT tag

converts to a DINT

value by zero-fill.

Destination

SINT
INT
DINT

tag

tag to store the result

Description:

When enabled, the instruction evaluates the OR operation:

If the Bit In And the Bit In The Bit In the
Source A Is Source B Is: Destination Is:
0 0 0
0 1 1
1 0 1
1 1 1

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | X Program Ladder Logic

If you mix integer data types, the instruction fills the upper bits of the smaller integer data

types with Os so that they are the same size as the largest data type.

Execution:

Condition ‘ Action

prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.

S The instruction performs a bitwise OR operation.
rung-condition-in is true

The rung-condition-out is set to true.

Example:

When enabled, the OR instruction performs a bitwise OR operation on ValueA and ValueB
and places the result in Result.

Souced |0|0|OfOfOfO[O|O|OjO|O|OjO]jT|OjT|{Ofr|{ofr|{ofr[ofrf1jr|T]T]1|[1|[1]1

SourceB|0|0|O|O|O|O|OfOfOfOfOfOD|t|T|T|T)t]1]1|1|0OfOfOfOfOfO|O|OfO|O|O|O

Dest(o|0|ojo|ofofofojojofofoftjr)tfr[t{r|r|1[Ooft|oj1]1jr|t1f1|{1|1]1]1

LirnitSwitch OR
] [Bitwize Inclusive OR —
Source A Yalues
2E0000000000000107101 210101111111 11
Source B “YalueB
2800000000000a01 1111111 000000000000
Dest Result
Z#0000000000001 11111 110101111111 11

Publication ERSC-1200 Rev 2.2 — July 2016

149

OF’ULSEROLLER

ConveyLogix Programmer’s Guide CONVEY L LOGIX @

5.5.5 Bitwise Exclusive OR (XOR)

The XOR instruction performs a bitwise XOR operation using the bits in Source A and
Source B and places the result in the Destination.

XOR
Bitwise Exclusive OR}|-

Source A

|

Source B

Dest

Operands:
Operand Type Format Description
SINT _ _
immediate _
Source A INT . value to XOR with Source B
a
DINT J
A SINT or INT tag converts to a DINT value by zero-fill.
SINT _ _
immediate _
Source B INT . value to XOR with Source A
a
DINT 9
A SINT or INT tag converts to a DINT value by zero-fill.
SINT
Destination INT tag tag to store the result
DINT

Description:

When enabled, the instruction evaluates the XOR operation:

If the Bit In And the Bit In The Bit In the
Source A Is Source B Is: Destination Is:
0 0 0
0 1 1
1 0 1
1 1 0

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

Program Ladder Logic EsH

If you mix integer data types, the instruction fills the upper bits of the smaller integer data
types with Os so that they are the same size as the largest data type.

Execution:

Condition Action

The rung-condition-out is set to false.

prescan

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

The instruction performs a bitwise OR operation.
The rung-condition-out is set to true.

Example:

When enabled, the XOR instruction performs a bitwise XOR operation on ValueA and
ValueB and places the result in the Result tag.

“Waloed (D)0 0|0jofo|ofo|ojofDo)O Tpof1oprforrjofr)oparfrprfrypryprfryrf1
“YalueB |O(O|0O(0|0|C(0|0Of{0|O]|D(0D Ty jofojofo|e|ofojof{o|ojofa
Fesult |(o(o|ofojojo({ojofojo|jn|o glifojprjapryoforrqofryprfrprpafrprfra
Limit=witch YR
] [Bitwize Exclusive OF —

Source A “Yalued,

2000000000000 10101111111 11

Source B “YalueB

0000000000001 1111111 000000000000

Dest Result

ZE0000000000001 0310101300907 11111111

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

CONVEYLOGIX (®)

5.5.6 Bitwise NOT (NOT)

The NOT instruction performs a bitwise NOT operation using the bits in the Source and
places the result in the Destination.

NOT
- Bitwise NOT =
Source ?
?
Dest ?
?
Operands:
Description
SINT _ _
immediate
Source INT value to NOT
tag
DINT
A SINT or INT tag converts to a DINT value by sign-extension.
SINT
Destination INT tag tag to store the result
DINT
Description:

When enabled, the instruction evaluates the NOT operation:

If the Bit In Source Is:

The Bit In theDestination Is:

If you mix integer data types, the instruction fills the upper bits of the smaller integer data

types with Os so that they are the same size as the largest data type.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | x Program Ladder Logic k!

Execution:

Condition ‘ Action

prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.

A The instruction performs a bitwise NOT operation.
rung-condition-in is true

The rung-condition-out is set to true.

Example:

When enabled, the NOT instruction performs a bitwise NOT operation on ValueA and places
the result in Result tag.

Va|UEA|DDDDﬂDDD{I{IDDD1D1IZI1{I1EI1[I1'I1111111|
Reault|1111111111111[I1|]1{I1[!I1EI1I][IEIﬂﬂI}DD[I|
Limit=witch BT,
] [Bitwise MOT -
Source walued,
ZE000000000000010101010107111111111
Dest Result
ZE#1T 11111111 11010101 0101000000000

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

5.5.7 Clear (CLR)

The CLR instruction clears all the bits of the Destination.

Operands:

Operand Type Format Description

SINT
Destination INT
DINT

CLR
— Clear -

Dest ?

tag tag to clear

CONVEYLOGIX (®)

Description:

The CLR instruction clears all the bits of the Destination.

Execution:

Condition ‘ Action

prescan

The rung-condition-out is set to false.

rung-condition-in is false

The rung-condition-out is set to false.

rung-condition-in is true

The instruction clears the Destination.
The rung-condition-out is set to true.

Example:

Let Value is equal to 9999. When enabled, clear all the bits of Value to 0.

LirnitSwitch CLR
1 LC
1 F Clear

Dest

Yalue

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOGI X Program Ladder Logic [k

5.6

Module Specific Instructions

The module specific instructions perform controller-specific operations.

To enter a module specific instruction use buttons form Module Specific tab of Instruction

Bar.
—| r|:|1| I'E'Il RDHlWRRl WRC' DOLl DOHl
Bit | Timera"En:nunterl En:nmparel En:nmpute.n"Mathl Move/Logical Module 5 pecific I Pragram En:nntrn:nll
Instruction Description ‘
RDR read local Modbus register
WRR write local Modbus register
WRC write local Modbus register and send via communication
DOL count pulses of the left motor when enabled
DOR count pulses of the right motor when enabled

DOL and DOR instructions are available only for ConveyLinx controller type.

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveyLogix Programmer’s Guide CONVEY L LOGIX @

5.6.1 Read Reqister (RDR)

The RDR instruction copies the value of local Modbus register, referred to Reg No, to the
Destination.

RDR
- Read Register |
Reg No ?
Dest ?
?
Operands:
Operand ‘ Type ‘ Format Description
. : . Modbus register number. Must be
Reg No Modbus Register | immediate from 1 to 512.
SINT
Destination INT tag tag to store the result
DINT
Description:

The RDR instruction copies the value of local Modbus register, referred to Reg No, to the
Destination. The Modbus register value remains unchanged.

Destination Type Action

SINT Low BYTE of the Modbus register is copied to the Destination.

INT The Modbus register is copied to the Destination.

Two consecutive Modbus registers are copied to the Destination.
DINT The first register is copied to Low WORD and the second — to
High WORD of the Destination.

Execution:
prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.

The instruction copies the value, referred to Reg No, into
rung-condition-in is true the Destination.
The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

Program Ladder Logic [syé

®) CONVEYLOG X

Example 1:

Type of Value is SINT. Let the value of local Modbus register 110 is 300 (16#012C).

When enabled, read register 110 and put low BYTE (16#2C) of the value to Value tag. The
high BYTE is truncated.

LirmitSwitch ROR
] [Fead Register
Feg Mo 110
Dest “alue
TE#2C
Example 2:

Type of Value is INT. Again let the value of local Modbus register 110 is 300 (16#012C).

When enabled, read register 110 and put the value to Value tag.

LirnitSwitch ROR
] [Fead Register —
Feg Mo 110
Dest “alue
160120
Example 3:

Type of Value is DINT. Let the value of local Modbus register 110 is 300 (16#012C) and
value of local Modbus register 111 is 0 (16#0000).

When enabled, read registers 110 and 111 and put the value of register 110 to low WORD
(16#012C) of Value tag and the value of registers 111 to high WORD (16#0000) of Value

tag.
LirmitSwitch ROR
] [Fead Register —
Feg Mo 110
Dest “Walue
1EH000001 2

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveyLogix Programmer’s Guide CONVEY L LOGIX @

5.6.2 Write Reqister (WRR)

The WRR instruction copies the value of Source to local Modbus register, referred to Reg
No.

WRR
- Write Register |
Source ?
?
Reg No 3
Operands:
Operand Type Format Description
SINT
Source INT tag value to write
DINT
Reg No Modbus Redister | immediate Modbus register number. Must be
9 from 1 to 512.
Description:

The WRR instruction copies the value of Source to local Modbus register, referred to Reg
No. The Source value remains unchanged.

Source Type Action

The Source is copied to the Low BYTE of the Modbus register.

SINT The High BYTE of the Modbus register remains unchanged.

INT The Source is copied to the Modbus register.

The Source is copied to two consecutive Modbus registers. The
DINT Low WORD of Source is copied to the first Modbus register and
the High WORD - to the second Modbus registers.

Execution:
prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.

The instruction copies the value of Source to Modbus
rung-condition-in is true register, referred to Reg No.

The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

®) CONVEYLOG X

Example 1:

Program Ladder Logic

Let type of Value is SINT and Value is equal to 45 (16#2D).

When enabled, copies the value of Value tag to the Low BYTE of the Modbus register 110.

The High BYTE of the Modbus register 110 remains unchanged.

Limit=witch WRR
] [Write Register
Source “alue
16#20
Feg Mo 110
Example 2:
Let type of Value is INT and Value is equal to 300 (16#012C).
When enabled, copies the value of Value tag to Modbus register 110.
LirnitSwitch WRR
] [Write Register
Source “alue
1B#012C
Feg Ma 110
Example 3:

Let type of Value is DINT and Value is equal to 300 (16#0000012C).

When enabled, copies the low WORD of Value tag (16#012C) to Modbus register 110 and

the high WORD of Value tag (16#0000) to Modbus register 111.

LirnitSwitch WRR
] [Wirite Register

Source “Walue

1ER0000012C

Feqg Mo 110

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

159

OF’ULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

5.6.3 Write Reqgister Comm (WRC)

The WRC instruction copies the value of Source to local Modbus register, referred to Reg No
and send via communication.

WRC
—Write Register Comm|-
Source ?
s
Reg No Y
Operands:
Operand ‘ Type ‘ Format Description
SINT
Source INT tag value to write
DINT
. . . Modbus register number. Must be
Reg No Modbus Register | immediate from 1 to 512.
Description:

The WRC instruction copies the value of Source to local Modbus register, referred to Reg No
and send via communication. The Source value remains unchanged.

the WRC instruction; it may cause interrupts to awaken idle tasks. Frequent
use of the WRC instruction in certain cases may affect processor loading and
performance such that communications and/or motor commutation tasks may
delay or cause unexpected results.

Source Type Action

The Source is copied to the Low BYTE of the Modbus register.
The High BYTE of the Modbus register remains unchanged.

c ConveyLinx and ConveyNet controllers are organized by events. When using

SINT

INT The Source is copied to the Modbus register.

The Source is copied to two consecutive Modbus registers. The
DINT Low WORD of Source is copied to the first Modbus register and
the High WORD - to the second Modbus registers.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | x Program Ladder Logic EKex!

Execution:
Condition ‘ Action
prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.

The instruction copies the value of Source to Modbus
rung-condition-in is true register, referred to Reg No.

The rung-condition-out is set to true.
Example:

When enabled, copies the value of Value tag to local Modbus register 110. If register 110
participates to any of the controller events, sends update to the other controller(s).

LirnitSwitch WRE
] [Wiitite Register Comm j—
Source Walue
300
Feg Mo 110

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG I X @

5.6.4 Distance On Left (DOL)

The DOL instruction counts evaluated pulses of the left motor when the instruction is
enabled.

Dol
- Distance On Left —{EN}—

Tirmer ? —{DN}—

Preset ?

Accum ?
Operands:
Operand ‘ Type ‘ Format Description
Timer TIMER tag TIMER structure
Preset DINT immediate how high to count

_ _ evaluated pulses of the left motor
Accum DINT immediate o _ _

initial value is typically 0

TIMER Structure

Mnemonic ‘ Data Type Description

The enable bit indicates that the DOL

EN BOOL instruction is enabled.

T BOOL The tlmmg b_|t indicates that a counting
operation is in process

.DN BOOL The done bit is set when .ACC = .PRE.

The preset value specifies the value which the
.PRE DINT accumulated value must reach before the
instruction sets the .DN bit.

The accumulated value specifies the number of
.ACC DINT pulses, evaluated from the left motor, the
instruction has counted.

Description:
When enabled, the DOL instruction counts the pulses, evaluated of left motor.

The DOL instruction accumulates pulses until:

e the DOL instruction is disabled
e the .ACC = .PRE

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

® CONVEYLOG X

Program Ladder Logic

When the DOL instruction is disabled, the .ACC value is cleared.

A DOL instruction is available only for ConveyLinx controller type.

Execution:

Condition Action

prescan

The .EN, .TT, and .DN bits are cleared.
The .ACC value is cleared.
The rung-condition-out is set to false.

rung-condition-in is false

The .EN, .TT, and .DN bits are cleared.
The .ACC value is cleared.
The rung-condition-out is set to false.

rung-condition-in is true

examine DN bit=1

.DN bit

.DNbit=0

.EN bit is set

.TT bitis set

TT bitis set

ACC = evaluated pulses

"ACC value~_"°

examine
ACC

ACC < PRE

.DN is set

.TT bitis cleared

rolls over

ACC = 2,147 483 647

rung-condition-out is set to
true

end

Publication ERSC-1200 Rev 2.2 — July 2016

163

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Example:

When LimitSwitch is set, Light_1 is on for 2000 pulses. When Pulses.ACC reaches 2000,
Light_1 goes off and Light_2 goes on. Light_2 remains on until the DOL instruction is
disabled. If LimitSwitch is cleared while DOL is counting, Light_1 goes off.

Limit=Switch DL
] [T.DistanceDnPLnlaﬁ :‘({Emg;_—
imer ulses
Preset 2000
Accum 1]
FPulses TT Light 1
1 L T
1l L S
Fulzes. DM Light 2
1 C P
1 C A

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

® CONVEYLOG X

5.6.5 Distance On Right (DOR)

Program Ladder Logic

The DOR instruction counts evaluated pulses of the right motor when the instruction is

enabled.

Operands:

Operand Type Format

DOR

Distance On Right | EN—

Tirner
Preset
ACCUm

? (DN}

i
?

Description

Timer TIMER tag TIMER structure

Preset DINT immediate how high to count

Accum DINT immediate evalue_lted p_ulses of the right motor initial
value is typically O

TIMER Structure

Mnemonic Data Type

Description

EN BOOL The engblg bit indicates that the DOR
instruction is enabled.

T BOOL The timing b_|t indicates that a counting
operation is in process

.DN BOOL The done bit is set when .ACC = .PRE.
The preset value specifies the value which the

.PRE DINT accumulated value must reach before the
instruction sets the .DN bit.
The accumulated value specifies the number of

ACC DINT pulses, evaluated from the right motor, the
instruction has counted.

Description:

When enabled, the DOR instruction counts the pulses, evaluated of right motor.

The DOR instruction accumulates pulses until:

e the .ACC = .PRE

the DOR instruction is disabled

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

OF’ULSEROLLER

CONVEYLOGIX (®)

When the DOR instruction is disabled, the .ACC value is cleared.

A DOL instruction is available only for ConveyLinx controller type.

Execution:

Condition Action

prescan

The .EN, .TT, and .DN bits are cleared.
The .ACC value is cleared.
The rung-condition-out is set to false.

rung-condition-in is false

The .EN, .TT, and .DN bits are cleared.
The .ACC value is cleared.
The rung-condition-out is set to false.

rung-condition-in is true

examine DN bit =1

.DN bit

.DNbit=0

ENDIt=0

.TT bitis set

ACC = evaluated pulses

"ACC value ~_"°

.EN bit is set

.TT bitis set

examine
ACC

ACC < PRE

.DN is set

.TT bitis cleared

rolls over

ACC = 2,147 483 647

rung-condition-out is set to
true

end

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

Program Ladder Logic BNy

®) CONVEYLOG X

Example:

When LimitSwitch is set, Light_1 is on for 2000 pulses. When Pulses.ACC reaches 2000,
Light_1 goes off and Light_2 goes on. Light_2 remains on until the DOR instruction is
disabled. If LimitSwitch is cleared while DOR is counting, Light_1 goes off.

LirmitSwitch DOOR
] [Tpistance DnFl?i?ht :({Em%__
imer ulses
Preset 2000
Arccum 1
Fulses TT Light 1
1 C P
1 T (R
Fulses. 0N Light 2
1 L P
1 T o

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

5.7 Program Control Instructions

Use the program control instructions to change the flow of logic.

To enter a program control instruction use buttons form Program Control tab of Instruction
Bar.

—| |1:|1| I'E'Il lep| LEIL|

Bit I Timera’EDunterI Eu:umparel Eu:umpute.-’h“lathl Move/lLogical | Module Specific. Program Contral |

Instruction M{Jti()r\—‘

JMP skip portions of ladder logic
LBL the target of the JMP instruction

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOGI X Program Ladder Logic [Kee)

5.7.1 Jump (JMP)

The JMP instruction skips portions of ladder logic.
?

—{IMP——
Operands:
Operand Type Format Description
label name LABEL LABEL name name for associated LBL
instruction
Description:

When enabled, the JMP instruction skips to the referenced LBL instruction and the controller
continues executing from there. When disabled, the JMP instruction does not affect ladder
execution.

A The JMP instruction can move ladder execution only forward.

Jumping to a label saves program scan time by omitting a logic segment until it's needed.

JMP conditions are scanned and it is not allowed to jump forward ladder logic. If it occurs,
controller doesn’t run and the next error reports:

#11 — Wrong Jump

Execution:
prescan The rung-condition-out is set to false.
rung-condition-in is false The rung-condition-out is set to false.
Ladder logic execution jumps to the rung that contains
rung-condition-in is true the LBL instruction with the referenced label name.
The rung-condition-out is set to true.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide

Example:

CONVEYLOGIX (®)

When the JMP instruction is enabled, execution jumps over successive rungs of logic until it
reaches the rung that started with LBL instruction with name Label_1.

LirnitSwitch Label 1
0 1 F LIMPY
Start CIp
1] [.T- ar Cn Bela'-.-'. :{{EE’%—_
rmer uration
Preset S000
Arncurm o
Inputs.4 Light_1
3 1 LC P
1 L Lo
Left Sensor Port, PIM4
Label 1
[1
3 LLEELJ

When the JMP instruction is executed, instructions between JMP and LBL instructions are

not executed (in this example - instructions of Rung 1 and Rung 2).

A In this example TON instruction will not be executed.

Publication ERSC-1200 Rev 2.2 — July 2016

oPULSEROLLER

@ CONVEY LOG | X Program Ladder Logic WA

5.7.2 Label (LBL)

The LBL instruction is the target of the JMP instruction that has the same label name.

—[LEL]—

Operands:

Operand Type Format Description

label name LABEL LABEL name name for LBL instruction
Description:

The LBL instruction marks the rung where the logic will continue after execution of JIMP
instruction with the same name.

Make sure the LBL instruction is the first instruction on its rung.

A label name must be unigue within a routine. The name can contain letters, numbers, and
underscores ().

Execution:

The LBL instruction is a blank instruction. It is not executed.

Example:

When the JMP instruction is enabled, “Other rungs of code” are jumped, and logic continues
the rung that started with LBL instruction with name Label_1.

Lirnit Swatch Label 1
1 F CIMP

Other rungs of code

Label 1

—{ LBL |

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

5.7.3 Jump to Function Block (JFEB)

The JFB instruction calls function block.

JFB
- Jurnp to Function Block
FE Tag ?
Operands:
Operand Type Format Description
FB Tag FB type tag name of function block instance
Description:

When enabled, the JFB instruction executes function block routine.

!E The JFB instruction is complete when all function block routine instructions are

executed.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Executes all function block routine instruction.
The rung-condition-out is set to true.

Example:

When Run.0 is set, routine of function block Calculate is executed, using CalcA instance

data.
‘ Fun.O IFE
1] [Jurnp to Function Block
‘ FBE Tag CalcA,

Publication ERSC-1200 Rev 2.2 — July 2016

oPULSEROLLER

@ CONVEY LOG | X Program Ladder Logic BEN&]

5.7.4 Return from Function Block (RFB)

The RFB instruction breaks the execution of current function block routine.

{RFE}

Operands:
The RFB instruction has no operands.

Description:

When enabled, the RFB instruction breaks the execution of current function block routine.

A All instructions after RFB are not executed.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Breaks the execution of current function block routine.
The rung-condition-out is set to true.

Example:

When Flag is set, all instructions after RFB are not executed (instruction MUL is not
executed).

Flag
0 1 F (RFB}

MALIL
1 Plultiply _—

Source A Param
100

Source B Faram
100

Dest Result
]

Publication ERSC-1200 Rev 2.2 — July 2016

QPULSEROLLER

®) CONVEYLOG X

6.0 Program Structured Text

Program Structured Text

Structured text is a textual programming language that uses statements to define what to

execute.

e Structured text is case sensitive.

e Use tabs and carriage returns (separate lines) to make your structured text easier to
read. They have no effect on the execution of the structured text.

Structured text can contain these components:

Term

Definition

Examples

Assignment

Use an assignment statement to assign values to
tags.
The “=" operator is the assignment operator.

Terminate the assignment with a semi colon “;”.

value? := valuel;

Expression

An expression is a part of a complete assignment
or construct statement.

An expression evaluates to a numerical expression
(number) or to a BOOL expression (true or false).
An expression contains:

A named area of the memory where

Tag data is stored (BOOL, SINT, INT, valuel
DINT).
Immediate | A constant value. 4

Operator A symbol or mnemonic that specifies
an operation within an expression.

valuel + value2
value2 >= valuel

When executed, a function yields
one value. Use parentheses to
Function contain the operand of a function.

Functions can be used in
expressions.

function(valuel)

Function
Block

A function block call is a standalone statement and
cannot be used in expressions.

A function block call uses parenthesis to contain its
input or/and output parameters.

Depending on the function block type and call,
there can be zero, one, or multiple parameters.

When executed, a function block yields one or
more values that are part of a data structure.

Terminate the instruction with a semi colon “;”.

FB_instance();

FB_instance(Inl :=
valuel);

FB_instance(Inl :=
valuel, In2 := value2,
Out => value3);

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

Conveyl ogix

Programmer’s Guide

CONVEYLOGIX (®)

Term Definition Examples
IF...THEN
CASE
A conditional statement used to trigger structured FOR...DO
Construct text code (other statements).
Terminate the construct with a semi colon ;. EXIT
CONTINUE
RETURN
Text that explains or clarifies what a section of /lcomment
structured text does.
*
Use comments to make it easier to interpret the (*start of comme*nt e
end of comment*)
Comment structured text.
Comments do not affect the execution of the
structured text. [*start of comment . . .
*
Comments can appear anywhere in structured text. end of comment*/

6.1

Assignment

Use an assignment to change the value stored within a tag. An assignment has this syntax:

tag := expression;

Component Description
tag Represents the tag that is getting the new value.
The tag must be a BOOL, SINT, INT, or DINT.
= Is the assignment symbol.
Represents the new value to assign to the tag.
If tag is this data type Use this type of expression
expression BOOL BOOL expression
SINT
INT Numeric expression
DINT
X Ends the assignment.

The tag retains the assigned value until another assignment changes the value.

The expression can be simple, such as an immediate value or another tag name, or the
expression can be complex and include several operators and/or functions.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Structured Text Y4

6.2 Expression

An expression is a tag name, equation, or comparison. To write an expression, use any of
these elements:

e Tag name that stores the value (variable).

¢ Number that you enter directly into the expression (immediate value).
¢ Functions, such as: MOD.

e Operators, such as: +, -, <, >, AND, OR.

For more complex requirements, use parentheses to group expressions within expressions.
This makes the whole expression easier to read and ensures that the expression executes in
the desired sequence.

You may add user comments inline. Therefore, local language switching does
not apply to your programming language.

In structured text, you use two types of expressions:

e BOOL expression — an expression that produces either the BOOL value of TRUE (1)
or FALSE (0).

A BOOL expression uses BOOL tags, relational operators, and logical operators to compare
values or check if conditions are true or false.

For example, tagl > 65
A simple BOOL expression can be a single BOOL tag.

Typically, you use BOOL expressions to condition the execution of other logic.
¢ Numeric expression — an expression that calculates an integer value.

A numeric expression uses arithmetic operators, arithmetic functions, and bitwise operators.
For example, tagl + 5
Often, you nest a numeric expression within a BOOL expression.

For example, (tagl + 5) > 65

Use the following table to choose operators for your expressions:

If you want to Then
Calculate an arithmetic value Use Arithmetic Operators and Functions
Compare two values Use Relational Operators

Check if conditions are true or false Use Logical Operators

Compare the bits within values Use Bitwise Logical Operators

Read/write Modbus Register Use Modbus Register Operators

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide

6.2.1 Arithmetic Operators and Functions

CONVEYLOGIX (®)

Arithmetic operators calculate new values. You can combine multiple operators and
functions in arithmetic expressions.

To Use this operator Optimal data type
Add + DINT
Subtract - DINT
Multiply * DINT
Divide / DINT
Absolute value ABS DINT
Negate NEG DINT

Arithmetic functions perform math operations. Specify a constant, a non-boolean tag, or an
numeric expression for the function.

For Use this operator Optimal data type
Modulo-divide MOD(num_expl, num_exp2) DINT
Absolute value ABS(num_exp) DINT

For example:

Use this format

Example

For this situation

You’d write

valuel operator value2

If gain and gain_adj are DINT tags
and your specification says: "Add 15
to gain and store the result in
gain_adj."

gain_adj := gain + 15;

operator valuel

If alarm and high_alarm are DINT
tags and your specification says:
“Negate high_alarm and store the
result in alarm.”

alarm:= -high_alarm;

function(numeric_expression)

If overtravel and overtravel POS are
DINT tags and your specification
says: “Calculate the absolute value
of overtravel and store the result in
overtravel POS.”

overtravel_POS :=
ABS(overtravel);

valuel operator
(function((value2+value3)/2)

If adjustment and position are DINT
tags and sensorl and sensor2 are
REAL tags and your specification
says: “Find the absolute value of the
average of sensorl and sensor2,

position := adjustment
+ ABS((sensorl +
sensor2)/2);

Publication ERSC-1200 Rev 2.2 —

July 2016

OPULSEROLLER

@ CONVEY I—OG I X Program Structured Text el

Use this format Example
add the adjustment, and store the
result in position.”

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide

6.2.2 Relational Operators

CONVEYLOGIX (®)

Relational operators compare two values or strings to provide a true or false result. The
result of a relational operation is a BOOL value.

If the comparison is The result is
true !
false 0

Use these relational operators.

For this comparison:

Use this operator:

Optimal Data Type:

Equal = DINT
Less than < DINT
Less than or equal <= DINT
Greater than > DINT
Greater than or equal >= DINT
Not equal <> DINT
For example:

Use this format

Example

For this situation

You’d write

valuel operator value2

If temp is a DINT tag and your
specification says: “If temp is less

than 100-then ...”

IF temp <100 THEN

bool_tag := bool_expression

If count and length are DINT tags,
done is a BOOL tag, and your
specification says "If count is greater
than or equal to length, you are
done counting.”

Publication ERSC-1200 Rev 2.2 — July 2016

done := (count >=
length);

®) CONVEYLOG X

6.2.3 Logical Operators

OPULSEROLLER

181

Program Structured Text

Logical operators let you check if multiple conditions are true or false. The result of a logical
operation is a BOOL value:

If the comparison is The result is
true !
false 0

Use these logical operators:

For Use this operator Data Type
Logical AND &, AND BOOL
Logical OR OR BOOL
Logical exclusive OR XOR BOOL
Logical complement NOT BOOL
For example:
Use this format Example
For this situation You’d write

BOOLtag

If photoeye is a BOOL tag and your
specification says: “If photoeye 1 is on then...”

IF photoeye THEN...

NOT BOOLtag

If photoeye is a BOOL tag and your

IF NOT photoeye

specification says: “If photoeye is off then...” THEN...
expressionl & If photoeye is a BOOL tag, temp is a DINT tag, IF photoeye & (temp
expression2 and your specification says: “If photoeye is on < 100) THEN...

and temp is less than 100-then...".

expressionl OR
expression2

If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on

or temp is less than 100-then...".

IF photoeye OR
(temp < 100) THEN...

expressionl XOR
expression2

If photoeyel and photoeye2 are BOOL tags
and your specification says: “If:

e photoeyel is on while photoeye?2 is off
or

e photoeyel is off while photoeye?2 is on

IF photoeyel XOR
photoeye2 THEN...

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Use this format Example

then..."
BOOLtag := If photoeyel and photoeye2 are BOOL tags, open := photoeyel &
expressionl & open is a BOOL tag, and your specification photoeye?;
expression2 says: “If photoeye1 and photoeye2 are both

on, set open to true”.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CO NVEY LOG I X Program Structured Text BEEE]

6.2.4 Bitwise Operators

Bitwise operators manipulate the bits within a value based on two values.

Operator Use this operator Optimal Data Type

Bitwise AND &, AND DINT

Bitwise OR OR DINT

Bitwise exclusive OR XOR DINT

Bitwise complement NOT DINT

Bitwise clear CLR DINT

Shift left << DINT

Shift right >> DINT

For example:

Use this format Example
For this situation You’d write

valuel operator value2 If inputl, input2, and resultl are DINT resultl := inputl AND
tags and your specification says: input2;

“Calculate the bitwise result of inputl and
input2. Store the result in result1.”

valuel << 2 If inputl and resultl are DINT tags and resultl := inputl << 2;
your specification says: “Shift left inputl
two times and store the result in result1.”

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

6.2.5 Modbus Reqister Operators

Modbus register operators allow read from or write to the controller’'s Modbus registers.

%Rreg_number

Operands:

Operand Type Format Description

reg_number Modbus immediate Modbus register number. Must be
Register from 1 to 512.

Description:

To read a Modbus register use the next syntax:
tag := %Rreg_number;

The value of Modbus register is 2 byte. If tag type is SINT, only Low BYTE of the Modbus
register is copied to tag.

To write into Modbus register use the next syntax:
%Rreg_number := tag;
The value of Modbus register is 2 byte.

If tag type is DINT, only the Low WORD of tag value is copied to Modbus register.

For example:

Use this format Example
For this situation You’d write

tag := %Rreg_number The value of Modbus register 110 Value := %R110;
will be put to Value.

%Rreg_number :=tag The value of Value will be put to %R110 := Value;
Modbus register 110.

tag := %Rreg_numberl + The sum of Modbus registers 110 Value := %R110 +

%Rreg_number2 and 112 values will be put to Value. %R112;

6.2.6 Order of Execution

The operations you write into an expression are performed in a prescribed order, not
necessarily from left to right.

e Operations of equal order are performed from left to right.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ co NVEY LOG | X Program Structured Text Bkl

¢ If an expression contains multiple operators or functions, group the conditions in
parenthesis “(). This ensures the correct order of execution and makes it easier to
read the expression.

Order Operation

()

function(...)

%R

NOT, NEG, ABS, CLR
*, /[, MOD

+ -

<<, >>

<, <=, >, >=

© |00 N O |01 b WM

=, <>
&, AND
XOR

OR

[N
o

=
[

=
N

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

6.3 Constructs

Constructs can be programmed singly or nested within other constructs.

If you want to Use this construct
IF...THEN

Do something if or when specific conditions occur

Select what to do based on a numerical value CASE...OF

Do something a specific number of times before doing anything else FOR...DO

Continue the loop CONTINUE
Exit the loop EXIT
Exit the function block RETURN

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CO NVEY LOG I X Program Structured Text [Ey4

6.3.1 |F..THEN

Use IF...THEN construct to do something if or when specific conditions occur.

IF bool_expression THEN

<statement>;
END_IF;
Operands:
Operand Type Format Description
bool_expression BOOL tag BOOL tag or expression that
: evaluates to a BOOL value
expression (BOOL expression)
Syntax:

IF bool_expressionl THEN

<statement>; //Statements to execute when bool_expressionl is true

/[Optional
ELSIF bool_expression2 THEN

<statement>; //Statements to execute when bool_expression2 is true

//Optional
ELSE

<statement>; //Statements to execute when both expressions are false

END_IF;

To use ELSIF or ELSE, follow these guidelines:

e To select from several possible groups of statements, add one or more ELSIF
statements.
- Each ELSIF represents an alternative path.
- Specify as many ELSIF paths as you need.
- The controller executes the first true IF or ELSIF and skips the rest of the
ELSIFs and the ELSE.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

e To do something when all of the IF or ELSIF conditions are false, add an ELSE

statement.

This table summarizes combinations of IF, THEN, ELSIF, and ELSE.

If you want to And Then use this construct
Do something if or when Do nothing if conditions are IF...THEN
conditions are true false

Do something else if conditions IF...THEN...ESLE

are false
Choose from alternative Do nothing if conditions are IF...THEN...ELSIF
statements (or groups of false

statements) based on input
conditions

Assign default statements if all IF...THEN...ELSIF...ELSE
conditions are false

Example 1:

IF...THEN

If you want this

Enter this structured text

If rejects > 3 then
conveyor = off (0)

alarm =on (1)

IF rejects > 3 THEN
conveyor = 0;
alarm :=1;

END IF;

Example 2:
IF...THEN...ELSE

If you want this

Enter this structured text

If conveyor direction contact = forward (1) then IF conveyor_direction THEN

light = off
Otherwise light = on

light := 0;
ELSE

light := 1,
END _IF;

Example 3:

IF...THEN...ELSIF

Publication ERSC-1200 Rev 2.2 — July 2016

QPULSEROLLER

@ co NVEY LOG I X Program Structured Text BREe]

If you want this Enter this structured text

If sugar low limit switch = low (on) and sugar IF Sugar.Low & Sugar.High THEN
high limit switch = not high (on) then Sugar.Inlet := 1;
ELSIF NOT(Sugar.High) THEN

Sugar.Inlet := 0;

inlet valve = open (on)

Until sugar high limit switch = high (off)

END IF;
Example 4:
IF...THEN...ELSIF...ELSE
If you want this Enter this structured text
If tank temperature > 100 IF tank.temp > 200 THEN

then pump = slow pump.fast :=1; pump.slow :=0; pump.off :=0;
If tank temperature > 200 ELSIF tank.temp > 100 THEN

then pump = fast pump.fast :=0; pump.slow :=1; pump.off :=0;

otherwise pump = off ELSE
pump.fast :=0; pump.slow :=0; pump.off :=1;
END IF;

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

6.3.2 CASE...OF

CONVEYLOGIX (®)

Use CASE...OF construct to select what to do based on a numerical value.

CASE numeric_expression OF
selectorl: <statement>;

selectorN: <statement>;

ELSE
<statement>;

END_CASE;

Operands:

Operand Type Format Description

numeric_expression SINT tag tag or expression that evaluates to
INT expression a number (numeric expression)
DINT

selector SINT immediate same type as numeric_expression
INT
DINT

Syntax:

CASE numeric_expression OF

/Ispecify as many alternative selector values (paths) as you need

selectorl;

<statement>; //statements to execute when numeric_expression = selectorl

selector2;

<statement>; //statements to execute when numeric_expression = selector2

selector3 :

<statement>; //statements to execute when numeric_expression = selector3

optional

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Structured Text BEEkE

ELSE //statements to execute when numeric_expression # any selector

<statement>;
END_CASE;

The syntax for entering the selector values is:

When selector is: Enter:
one value value: statement
multiple, distinct values valuel, value2, valueN : <statement>

Use a comma (,) to separate each value.

a range of values valuel..valueN : <statement>
Use two periods (..) to identify the range.

distinct values plus a range of values valuea, valueb, valuel..valueN : <statement>

The CASE construct is similar to a switch statement in the C or C++ programming
languages. However, with the CASE construct the controller executes only the statements
that are associated with the first matching selector value. Execution always breaks after the
statements of that selector and goes to the END_CASE statement.

Example:

If you want this Enter this structured text

If recipe number = 1 then CASE recipe_number OF
Ingredient A outlet 1 = open (1) 1: Ingredient_A.Outlet_1 :=1;
Ingredient B outlet 4 = open (1) Ingredient_B.Outlet_4 :=1;

If recipe number = 2 or 3 then 2,3: Ingredient_A.Outlet_4 :=1;
Ingredient A outlet 4 = open (1) Ingredient_B.Outlet_2 :=1;
Ingredient B outlet 2 = open (1) 4..7: Ingredient_A.Outlet_4 :=1;

If recipe number = 4, 5, 6, or 7 then Ingredient_B.Outlet_2 :=1;
Ingredient A outlet 4 = open (1) 8,11..13: Ingredient_A.Outlet_1 :=1;
Ingredient B outlet 2 = open (1) Ingredient_B.Outlet_4 :=1;

If recipe number = 8, 11, 12, or 13 then ELSE
Ingredient A outlet 1 = open (1) Ingredient_A.Outlet_1 :=0;

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide

CONVEYLOGIX (®)

Ingredient B outlet 4 = open (1)
Otherwise all outlets = closed (0)

Ingredient_A.Outlet_4 :=0;

Ingredient_B.Outlet_2 :=0;

Ingredient_B.Outlet_4 :=0;
END_CASE;

Publication ERSC-1200 Rev 2.2 — July 2016

QPULSEROLLER

®) CONVEYLOG X

6.3.3 FOR...DO

Program Structured Text BuEek]

Use the FOR...DO loop to do something a specific number of times before doing anything

else.

FOR count:= initial_value TO final_value BY increment DO

<statement>;
END_FOR;
Operands:
Operand Type Format Description
count SINT tag tag to store count position as the
FOR...DO executes
INT
DINT
initial_value SINT tag must evaluate to a number
INT expression specifies initial value for count
DINT immediate
final_value SINT tag specifies final value for count,
INT expression which determines when to exit
the loop
DINT immediate
increment SINT tag (optional) amount to increment
INT expression count each time through the loop
DINT immediate If you don_t specify an increment,
the count increments by 1.
Syntax:

FOR count := initial_value

TO final_value

/loptional

BY increment //If you don’t specify an increment, the loop increments by 1.

DO

<statement>;
/loptional

IF bool_expressionl THEN

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

OPULSEROLLER

CONVEYLOGIX (®)

EXIT; //if there are conditions when you want to exit the loop early, use other
statements, such as an IF... THEN construct, to condition an EXIT statement.

END_IF;
/loptional

IF bool_expression2 THEN

CONTINUE; //If there are conditions when you want to continue the loop, use
other statements, such as an IF...THEN construct, to condition a CONTINUE statement.

END_IF;
END_FOR;

Make sure that you do not iterate within the loop too many times in a single
!2! scan.

The controller does not execute any other statements in the routine until it

completes the loop.

Consider using a different construct, such as IF...THEN.

Example 1:

If you want this

Enter this structured text

Clear bits 0 - 31 in an array of BOOLs:
1. Initialize the subscript tag to 0.

2. Clear array[subscript]. For example, when
subscript = 5, clear array[5].

3. Add 1 to subscript.
4. If subscript is < to 31, repeat 2. and 3.
Otherwise, stop.

FOR subscript: =0 TO 31 BY 1 DO
array[subscript] := 0;
END_FOR;

Example 2:

If you want this

Enter this structured text

Copy elements from one array to another until
the position not exceeds the number of valid
elements.

Both arrays are from DINT type and contain 10
elements.

1. Initialize the position tag to O.

FOR position :=0TO 10 BY 1 DO
IF position <= valid_count THEN

Quantity[position] :=
Inventory[position];

ELSIF
EXIT;

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ co NVEY I_OG I X Program Structured Text

2. If valid_count not exceeds current position END_IF;
the value_ of position copies from Inventory array END FOR:
to Quantity. Otherwise, stop. -

3. Add 1 to position.

4. If position is < to 10, repeat 2 and 3.
Otherwise, stop.

Publication ERSC-1200 Rev 2.2 — July 2016

195

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

6.3.4 RETURN

Use the RETURN statement if you want to exit the program directly.
RETURN;
Description:

RETURN statement exits the program directly, without executing any code.

RETURN statement may be used anywhere in program code.

Example:

If you want this Enter this structured text

If rejects > 3 then IF rejects > 3 THEN
conveyor = off (0) conveyor = 0;
alarm =on (1) alarm :=1;
return program RETURN;

END _IF;

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Structured Text k¥4

6.4 Function Block

Function block statements consist of the mechanisms for invoking a function block and for
returning control. Function block is invoked by a statement consisting of the name of the
function block instance followed by a parenthesized list of input or/and output parameters
assignment.

FB_instance(Inl := TRUE, In2 := 44, Out => bDone);

Component Description
FB_instance tag name of the function block instance
0 Optional consist function block input or/and output parameters
assignment.
Symbol Description
= Assign tag, immediate or expression to input or in-out
parameter.
=> Assign output or in-out parameter value to tag.

: Ends the function block call.

Description:
A function block call is a standalone statement and cannot be used in expressions.
A function block call uses parenthesis to contain its input or/and output parameters.

Depending on the function block type and call, there can be zero, one, or multiple
parameters.

When executed, a function block yields one or more values that are part of a data structure.

“,n

Terminate the instruction with a semi colon “;”.

The order in which parameters are listed in a function block invocation shall not be
significant. It is not required that all parameters be assigned in every invocation of a function
block. If a particular input parameter is not assigned a value in a function block invocation,
the previously assigned value (or initial value, if no previous assignment has been made)
shall apply.

There is two ways for entering function block call:

e by Drag&Drop operation.

Click on function block name in Project Bar and drag it to ST Routine View:

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

El{:l Function Blocks
-] Calculate
=27 Square

EL3E

Areal3T.Area = 0O;
END IF:

| Ll\;!_l Square

The cursor displays the place where instance will be inserted. Leave the mouse button.
Create New Tag dialog appears. Write a desired name and select OK.

@ Square Haoutine
=-23 Standard Function Block

If tag squareN from type Square does not exist, it is created
e by typing the symbol “(” after existing function block tag name.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Structured Text [Kef)

6.4.1 Standard Function Blocks

Standard function blocks are involved in ConveyLogix Programmer.

Unlike ladder logic, in structured text there is no rung-condition-in that trigger execution and
rung-condition-out to state transition. For some standard function block (for example
IEC_TON) input parameter EN is used for rung-condition-in and output parameter Q — for
rung-condition-out.

IEC_TON

IEC_TON function block is a non-retentive timer that accumulates time when an instance is
called and enabled (EN operand is true).

Syntax

Declaration of an instance of IEC_TON is performed in “Static” section of the function block
tags (for example: mylEC_TON).

To call IEC_TON use the following syntax:
mylEC_TON(EN := <Operand>, PT := <Operand>, Q => <Operand>, ET => <Operand>)

Operands

Operand Declaration Type Description

EN Input BOOL Enable input

T Input DINT Duration of the on delay in miIIiseconds.. .The
value of the PT parameter must be positive.

Q Output BOOL Operand that is set when the time PT expires

ET Output DINT Current time value

Description

IEC_TON instruction is used to delay the setting of the Q parameter for the programmed
duration PT. The instruction starts when EN parameter changes from "0" to "1" (positive
signal edge). The programmed time PT begins when the instruction starts. When the PT
duration has expired, the Q parameter returns signal state "1". The parameter Q remains set
as long as the start input is still "1". If the signal state of the EN parameter changes from "1"
to "0", the parameter Q will be reset. The timer function is started again when a new rising
edge is detected at the parameter EN.

The current time value is stored in the ET parameter. The time value starts at “0” and ends
when the value of the time duration PT is reached. The ET parameter is reset as soon as the
signal state of the parameter EN changes to "0".

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

OF’ULSEROLLER

Example:

Lets TimerA is a tag from standard function block IEC_TON type. When Switch is set, Light
will be set after 1800 ms. Then when Switch is cleared, Light goes off.

TimerA(EN := Switch, PT := 1800, Q => Light);

There is second way to write this example — first assign inputs parameters, then call function
block and after that assign outputs parameters.

Timer.EN := Switch;
TimerA.PT := 1800;
TimerA();

Light := TimerA.Q;

IEC_TOF

IEC_TOF function block is a non-retentive timer that accumulates time when an instance is
called and enabled (EN operand is false).

Syntax

Declaration of an instance of IEC_TOF is performed in “Static” section of the function block
tags (for example: mylEC_TOF).

To call IEC_TOF use the following syntax:

mylEC_TOF(EN := <Operand>, PT := <Operand>, Q => <Operand>, ET => <Operand>)

Operands

Operand Declaration Type Description

EN Input BOOL Enable input

T Input DINT Duration of the on delay in miIIiseconds.. .The
value of the PT parameter must be positive.

Q Output BOOL Operand that is reset when the time PT expires

ET Output DINT Current time value

Description

IEC_TOF instruction is used to delay the resetting of the Q parameter for the programmed
duration PT. The Q parameter is set when EN parameter changes from "0" to "1" (positive
signal edge). When the signal state of the EN parameter changes back to "0", the
programmed time PT starts. The parameter Q remains set as long as the time duration PT is
running. When the time duration PT expires, the Q parameter is reset. If the signal state of

Publication ERSC-1200 Rev 2.2 — July 2016

CONVEYLOGIX (®)

OPULSEROLLER

@ CONVEY LOG I X Program Structured Text

the IN parameter changes to "1" before the time duration PT has expired, the timer is reset.
The signal state of the Q parameter remains set to "1".

The current time value is stored in the ET parameter. The current time value starts at 0 and
ends when the value of the time duration PT is reached. When the time duration PT expires,
the ET parameter remains set to the current value until the EN parameter changes back to
"1". If the EN parameter changes to "1" before the time duration PT has expired, the ET
parameter is reset to the value O.

Example:

Lets myTOF is a tag from standard function block IEC_TOF type. To call IEC_TON use the
following syntax:

myTOF(EN := Tag_Start, PT := Tag_PresetTime,
Q => Tag_Status, ET => Tag_ElapsedTime);

There is second way to write this example — first assign inputs parameters, then call function
block and after that assign outputs parameters.

myTOF.EN := Tag_Start;
myTOF.PT := Tag_PresetTime;
myTOF ();

Tag_Status ;= myTOF.Q;
Tag_ElapsedTime := myTOF.ET,;

With a change in the signal state of the "Tag_Start" operand from "0" to "1", the "Tag_ Status"
operand is set. When the signal state of the "Tag_Start" operand changes from "1" to "0", the
time programmed for the “Tag_PresetTime” parameter is started. As long as the time is
running, the "Tag_Status" operand remains set. When the time has expired, the Tag_Status
operand is reset. The current time value is stored in the "Tag_ElapsedTime" operand.

IEC_RTO

IEC_RTO function block is a retentive timer that accumulates time when an instance is called
and enabled (EN operand is true).

The syntax and operands of IEC_RTO are the same as IEC_TON function block. IEC_RTO
accumulates the time until it is disabled.

IEC_DOL

IEC_DOL function block counts evaluated pulses of the left motor when an instance is called
and enabled (EN operand is true).

The syntax and operands of IEC_DOL are the same as IEC_TON function block.

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

OF’ULSEROLLER

IEC_DOR

IEC_DOR function block counts evaluated pulses of the right motor when an instance is
called and enabled (EN operand is true).

The syntax and operands of IEC_DOR are the same as IEC_TON function block.

IEC_CTU

IEC_CTU function block counts upward when an instance is called and enabled (CU operand
is true).

Syntax

Declaration of an instance of IEC_CTU is performed in “Static” section of the function block
tags (for example: mylEC_CTU).

To call IEC_CTU use the following syntax:
mylEC_CTU(CU := <Operand>, R := <Operand>, PV := <Operand>,

Q => <Operand>, CV => <Operand>)

Operands

Operand Declaration Type Description

CuU Input BOOL Count up input

R Input BOOL Reset input

PV Input DINT Value at which the output Q is set.
Q Output BOOL Counter status

CcVv Output DINT Current counter value
Description

IEC_CTU instruction is used to increment the value at the CV parameter. When the signal
state of the parameter CU changes from "0" to "1" (positive signal edge), the instruction is
executed and the current counter value of the parameter CV is incremented by one. When
the instruction is executed for the first time the current count of the CV parameter is set to
zero. The counter value is increased each time a positive signal edge is detected, until it
reaches the value of the parameter CV. When the CV value is reached, the signal state of
the CU parameter no longer has an effect on the instruction.

The signal state of the Q parameter is determined by the PV parameter. When the current
counter value is greater than or equal to the value of the PV parameter, the Q parameter is
set to signal state "1". In all other cases, the signal state of the Q parameter is "0". You can
also specify a constant for the PV parameter.

Publication ERSC-1200 Rev 2.2 — July 2016

CONVEYLOGIX (®)

OPULSEROLLER

@ CONVEY LOG I X Program Structured Text

The value of the CV parameter is reset to zero when the signal state at the R parameter
changes to "1". As long as the signal state of the R parameter is "1", the signal state of the
CU parameter has no effect on the instruction.

Example:

Lets myCTU is a tag from standard function block IEC_CTU type. To call IEC_CTU use the
following syntax:

myCTU(CU := Tag_Count, R := Tag_Reset, PV := Tag_PresetValue
Q => Tag_Status, CV => Tag_CounterValue)

There is second way to write this example — first assign inputs parameters, then call function
block and after that assign outputs parameters.

myCTU.CU := Tag_Count;
myCTU.R := Tag_Reset;
myCTU.PV := Tag_PresetValue;
myCTU();

Tag_Status ;= myCTU.Q;
Tag_CounterValue := myCTU.CV;

When the signal state of the "Tag_Count" operand changes from "0" to "1", the IEC_CTU
instruction executes and the current counter value of the "Tag_CounterValue" operand is
incremented by one. With each additional positive signal edge, the counter value is
incremented until it reaches the “Tag_PresetValue” value.

The "Tag_Status" output has signal state "1" as long as the current counter value is greater
than or equal to the value of the "Tag_PresetValue" operand. In all other cases, the
"Tag_Status" output has signal state "0". The current counter value is stored in the
"Tag_CounterValue" operand.

IEC_CTD

IEC_CTD function block counts downward when an instance is called and enabled (CD
operand is true).

Syntax

Declaration of an instance of IEC_CTD is performed in “Static” section of the function block
tags (for example: mylEC_CTD).

To call IEC_CTD use the following syntax:
mylEC_CTD(CD := <Operand>, LD := <Operand>, PV := <Operand>,
Q => <Operand>, CV => <Operand>)

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Operands

Operand ‘ Declaration ‘ Type ‘ Description

CD Input BOOL Count down input

LD Input BOOL Load input

PV Input DINT Value at which the output Q is set.
Q Output BOOL Counter status

CV Output DINT Current counter value
Description

IEC_CTU instruction is used to decrement the value at the parameter CV. When the signal
state of the CD parameter changes from "0" to "1" (positive signal edge), the instruction is
executed and the current counter value of the CV parameter is decremented by one. When
the instruction is executed for the first time, the counter value of the CV parameter will be set
to the value of the PV parameter. Each time a positive signal edge is detected, the counter is
decremented until it reaches the zero. When the zero is reached, the signal state of the CD
parameter no longer has an effect on the instruction.

If the current counter value is less than or equal to zero, the Q parameter is set to signal
state "1". In all other cases, the signal state of the Q parameter is "0".

The value of the CV parameter is set to the value of the PV parameter when the signal state
of the LD parameter changes to "1". As long as the signal state of the LD parameter is "1",
the signal state of the CD parameter has no effect on the instruction.

Example:

Lets myCTD is a tag from standard function block IEC_CTD type. To call IEC_CTD use the
following syntax:

myCTD(CD := Tag_Count, LD := Tag_Load, PV := Tag_PresetValue
Q => Tag_Status, CV => Tag_CounterValue)

There is second way to write this example — first assign inputs parameters, then call function
block and after that assign outputs parameters.

myCTD.CD := Tag_Count;
myCTD.LD := Tag_Load;
myCTD.PV := Tag_PresetValue;
myCTD();

Tag_Status := myCTD.Q;

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG I X Program Structured Text

Tag_CounterValue := myCTD.CV;

When the signal state of the "Tag_Count" changes from "0" to "1", the IEC_CTD instruction
executes and the value of the "Tag_CounterValue" operand is decremented by one. With
each additional positive signal edge, the counter value will be decremented until it reaches
the zero.

The operand "Tag_Status" has the signal state "1" as long as the current counter value is
less than or equal to zero. In all other cases, the "Tag_Status" output has signal state "0".
The current counter value is stored in the "Tag_CounterValue" operand.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

6.4.2 User-defined Function Blocks

User-defined function blocks are created by the user (see point 4.1).

Example:

Call CalcA instance of Calculate function block (the same example from point 4.5) on ST
from your custom function block.

/[Assign input parameters
CalcA.ParamB := 20;
CalcA.ParamC := 30;

[*Call FB*/

CalcA();

(*Assign output parameter*)

ResultCalc := CalcA.Sum;

This part of can be written also in one line:

CalcA(ParamB := 20, ParamC := 30, Sum => ResultCalc);

You can examine function block output parameters:
IF CalcA.Sum > 500 THEN ... END_IF;
But you cannot assign a value to output parameter:
CaleA-Sum—=500;
Also you cannot use called function block static parameters:
IF CaleA-Const>500 THEN
GCaleA-Const-=500;
END_IF;

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY I_OG I X Program Structured Text

6.5 Comments

To make your structured text easier to interpret, add comments to it.

e Comments let you use plain language to describe how your structured text works.
e Comments do not affect the execution of the structured text.

To add comments to your structured text:

To add a comment: Use one of these formats:
on a single line //comment
at the end of a line of structured text (*comment*)
[*comment*/
within a line of structured text (*comment*)
[*comment*/
that spans more than one line (*start of comment . . . end of
comment*)

[*start of comment . . . end of

comment*/

For example:

Format: Example:

/lcomment At the beginning of aline
//Check conveyor belt direction
IF conveyor_direction THEN...
At the end of aline
ELSE //If conveyor isn’t moving, set alarm light
light ;= 1;
END IF;

(*comment*) Sugar.Inlet[:=]1;(*open the inlet*)

IF Sugar.Low (*low level LS*)& Sugar.High (*high level
LS*)THEN...

(*Controls the speed of the recirculation pump. The
speed depends on the temperature in the tank.*)

IF tank.temp > 200 THEN...

Publication ERSC-1200 Rev 2.2 — July 2016

OF’ULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

Format: Example:

[*comment*/ Sugar.Inlet := 0;/*close the inlet*/
IF bar_code = 65 /*A*/ THEN...
[*Gets the number of elements in the Inventory array
and stores the value in the Inventory_Items tag*/
END_IF;

Publication ERSC-1200 Rev 2.2 — July 2016

*

Download a Project into Controller

®) CONVEYLOG X

7.0 Download a Project into Controller

Download procedure requires to be fulfilled the next conditions:

e controller IP Address must be set;
e project must be saved on the disc;

e The controller must be ONLINE. If the controller is ConveyLinx, it have to be in PLC
mode;

No errors in the routine;
All IMP/LBL instructions are correct.

Download procedure passes the next points:

e Verifies the routine;
e Calculates tags and instructions addresses;
e Verifies and calculates JIMP/LBL conditions;

o Creates PLCDATA xxx.bin file on the same folder, where is situated the project file.

Xxx is the project name;

o Downloads PLCDATA_xxx.bin into the controller;
e Waits to give time the controller to start new program execution.

During Download procedure all features are disabled and progress bar is shown to indicate

the process.

#: ConveyLogix - [Example.clp - Main Routine (192.168.211.21}]

File Edit “iew Controllerjlogic Window Help

~=1al x|
=181 x|

1 5 = e[)

Bit ITimen’Eounterl Eomparel Eomputex’MathI MovefLogicaII todule Specificl Program Eontroll

Download Program: l.ll.lllll ‘
=

Cornment for Rung 0

-
= Revisian i’ Inputs. 14 Outputs. 14 j
=0 Major 1 C P
COLfER 1 1 C L
B3 Minar _lﬂ Left Mechanical Break
4 3
-
- [
Example.clp — Main RBoutine (192.168.211.21) - 0 error(s) ;I
Calculate Example.clp - Main Routine (192.165.211.21) ...
Uploading PlcDats Example.bin to 192.168.211.21 (512 of 630)...
Uploading PleDats Example.bin to 192.168.211.21 (630 of 630)...
Uploading Plchats Example.bin to 192.168.211.21 (630 of 630)... FTP upload OK. -
4 | | 3
For Help, press F1 [[[

If some error occurs Download operation is interrupted.

shown in Output bar.

The result of Download operation is

Publication ERSC-1200 Rev 2.2 — July 2016

®) CONVEYLOG X

oPULSEROLLER

8.0 Debug Mode

Debug mode is used to test and debug the ladder logic. ConveylLogix Progammer’s Debug

mode doesn’t interfere with the controller’s function.

In Debug mode ConveylLogix Progammer send requests for controller’s header and for

needed tags values.

In Debug mode tags values are displayed in green color.

8.1 Enter the Debug Mode

To enter the Debug mode, select Controller/Logic / Debug menu or click on

i’ icon.

ConveylLogix Progammer checks the next conditions:

e The project is saved on the disc;
e The controller is ONLINE;
e There is a ladder program into controller;
e Ladder program into controller is the same as the project;
¢ Reading of controller service information is successful;
e The controller doesn’t report critical errors.
If any of conditions are not fulfilled, the message is reported. The error descriptions are given

on Appendix 1.

If Debug mode runs successful, debug icon is checked — @

Publication ERSC-1200 Rev 2.2 — July 2016

Debug Mode

ConveyLogix Programmer’s Guide CONVEYLOGI X @

#: ConveyLogix - [Example.clp - Main Routine {192.168.211.21) - Debug - DK {Ta - |EI|5|
File Edit WYew Controllerflogic Window Help == x|
DEE 2R S 20 |(E K Q|3 #es il o)
— | ot | =t | Ak] <> <] <] ons| osr| osF]
Bit ITimer.-"CDunterI I:u:umparel Eu:umpute.-"MathI Mu:uve.-"Lu:ugiu:aII Module Specificl Proaram I:u:untrnll
1 x Y
- Revision - LirnitSwitch Light 1
=0 Major q 1 L I
i T 1 C -
EH:l Minar
=0 Buid
L0 36 Liah
t 2
=0 Tasks GER gnt_.
20 Main Task 1 H Srir Than or Egl £
=3 Main Program ~ Source A, “alued,
{20 Tags 2ZH1010011 111111 b
“[_ Main Fouti Source B Result
=27 Data Types - 281010101 000000000
4| | » =
=
Download complete successfuly (Program mwemory = 4 %, Tags = 456 bytes) . =
“ 4| I 3
For Help, press F1 v

On the Title bar is displayed Debug mode and time of ladder program execution.

8.2 Change the Controller Mode

The controller has two modes:

e Program Mode — the controller doesn’t execute ladder the logic program.
¢ Run Mode - the controller runs the ladder program.

You may see the controller's mode only in ConveylLogix Progammer Debug mode.

When the controller is in Run Mode the Controller/Logic / Run Mode menu is checked and

corresponding icon is chosen.

E

To change the controller’'s mode to Program, select Controller/Logic / Program Mode menu

or click on ﬂ icon.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOGIX —_—

When the controller is in Program Mode the Controller/Logic / Program Mode menu is

checked and corresponding icon is chosen.

@it

To change the controller’'s mode to Run, select Controller/Logic / Run Mode menu or click on

o icon.

The controller’'s modes are mutually exclusive.

8.3 Watch and Change Boolean Tags

When the operand of boolean instructions is 1 (TRUE), rung-condition-in and rung-condition-

out of the element are displayed in green colour.

‘ LirnitSwitch Light_1 |
1 L S

o S0

To change the value of the operand of boolean instruction right-click on the element and
select Toggle Bit menu (or press Cirl + T keys).

LirnitSwitch Light 1
1 L P
i | k5 A

il Chpl43
oy Chrl1T
Paste L o
Delete Light_2
Edit Elemert B PN
Lo
=Sl Toggle Eit A,
11

If the value of the operand was 1 (TRUE), it is changed to O (FALSE).

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | X @

Limit=witch Light 1 ‘
1 [E T
1 C (A ‘

Now in this example, LimitSwitch is cleared, and Light_1 is cleared.
If the value of the operand was 0 (FALSE), it is changed to 1 (TRUE).

You also may watch and change Boolean values in Tags view.

Tag Mame flias For | Base Tag | Data Type | Debug Yalue Skyle :l
[+-valueb IMT 2#1010010111111111 |Binary
~Light_1 BOCL 0| Decimal
-~ LimikSwitch BOOL 0| Decimal
~Light_z2 BOCL 1|Decimal
#* -

Current tags values are displayed in Debug Value column in green colour. To change

Boolean value, click on Debug Value cell for the corresponding tag.

Tag Mame flias For | Base Tag | Data Tvpe | Debug value Skyle :l
[+ vwalieE IMNT Z#1010010111111111 [Binary
- Light_1 BOOL | Decimal
B -LimitSwitch BOOL Decimal
~Light_Z BOOL 1|Decimal
#* -
1] | 2

Type the new value (0 or 1) and click outside the rectangle or press Enter key.

Taqg Marme flias For | Base Tag | Data Type | Debug Yalue Skvle :l
[+-valueb IMT 2#1010010111111111 |Binary
~Light_1 BOCL 1| Decimal
B i LimitSwitch BOOL 1 |Decimal
~Light_z2 BOCL 1|Decimal
#* -
1] | 2

Publication ERSC-1200 Rev 2.2 — July 2016

QPULSEROLLER
Debug Mode

®) CONVEYLOG X

When you change a bit value on Tags View, changing is reflected all occurrences on on
Ladder View. And backwards, when you change a bit value on Ladder View, changing is

reflected on Tags View.

8.4 Watch and Change Non-boolean Tags

In Debug mode non-boolean operands are displayed below tag name in style, defined in

Tags View.
=ED Light 2
- Grtr Than ar Eqgl {0
Source A “Walued
2800101011111 1
Source B “YalueB
2000101111111 1

To change the tag value, double-click on it. Edit box will appear.

GEQ Light 2

— =t Than or Egl i *}
Source A walued,
2010011111111
Source B walueB
A1010010111111111

Type the new value and click outside the edit box or press Enter key.

=EQ Light_2

- Gitr Than ar Eql -
Source A “Yalued,
2E01010101111111 11
Source B “YalueB
2ZE0110001111111 1

Now in this example, ValueA is not greater than or equal to ValueB, and Light_2 is cleared.

You also may watch and change non-boolean values in Tags View in the same way as

boolean tags.

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

CONVEYLOGIX (®)

Tag Mame Alias For | Base Tag | Data Tvpe | Debug value Skyle ﬂ
[valusk INT Z#0110010111111111{Binary
B i-Light_1 BOCL 0| Decimal
- LimitSwitch BOCL 0| Decimal |
~Light_z BOOL 0|Decimal ~ =|
d | -

To change non-boolean value, click on Debug Value cell for the corresponding tag.

Tag Mame Alias For | Base Tag | Data Type Del:-ug Yalue Skvle :I
B - valueB INT : Binary

~Light_1 BOCL 0|Decimal

“LimitSwitch BOCL 0|Decimal =

~Light_z BOOL 0|Decimal =]

< | |
Type the new value and click outside the rectangle or press Enter key.

Tag Name flias For | Base Tag | Data Type | Debug Yalue Skvle :l
b [l Walush INT Z#0010010111111111 [Binary

~Light_1 BOCL 0| Cecimal

- LimitSwitch BOCL 0| Decimal (]

~Light_z BOOL 1|Decimal =]

When you change the tag value on Tags View, changing is reflected to all occurrences on

Ladder View. And backwards, when you change the tag value on Ladder View, changing is

reflected on Tags View.

8.5 Leave the Debug mode

To leave the Debug mode, select Controller/Logic / Stop Debugging menu or click on

checked @ icon.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | x Appendix A — Controller Tags

Appendix A — Controller Tags

ConveyLinx Controller Tags

Controller Tag Name Modbus Register(s)

Input Controller Tags

Inputs DINT See ConveyLinx Inputs Tag
FromUpstreamState INT 134
FromUpstreamTracking DINT 139, 140
FromDownstreamState INT 232

FromPLC DINT 266, 267

FromPLCArray INT[16] 13200 — 13215
MylPAddress DINT 26, 27

ServoReadyL eft BOOL 11 -bit0
ServoReadyRight BOOL 16 — bit O

FirstLadderExec BOOL

Output Controller Tags

Outputs DINT See ConveyLinx Outputs Tag
ToUpstreamState INT 116
ToDownstreamState INT 196
ToDownstreamTracking DINT 201, 202
ToPLC DINT 268, 269
ToPLCArray INT[16] 13100 - 13115
SensorPolarity INT 34
SpeedLeftMTR INT 40
SpeedRightMTR INT 64
ServoControllLeft INT 8
ServoControllRight INT 13
ServoResetLeft BOOL 9 —bhit0

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

Controller Tag Name Type Modbus Register(s)

ServoResetRight BOOL 14 —bit O
ServoCommandLeft BOOL 9—hitl
ServoCommandRight BOOL 14 —bit 1

ConveyLinx Inputs Tag

Tag Bit Description Modbus Register Relster Bit

0 PIN3, Left Sensor Port

1 PIN3, Left Control Port 35 1
2 PIN3, Right Sensor Port 35 2
3 PIN3, Right Control Port 35 3
4 PIN4, Left Sensor Port 35 4
5 PIN4, Left Control Port 35 5
6 PIN4, Right Sensor Port 35 6
7 PIN4, Right Control Port 35 7
16 Right Sensor Detect 36 0
17 Left Sensor Detect 36 1

ConveyLinx Outputs Tag

Description Modbus Register Register Bit
0 Left MDR RUN 260 0
1 Left MDR Direction 260 8
2 Right MDR RUN 270 0
3 Right MDR Direction 270 8
4 Left Control Digital Out 37 1
5 Right Control Digital Out 37 3
6 Left MDR Dig. Mode Enable 60 15
7 Right MDR Dig. Mode Enable 84 15
8 Left MDR Low MOSFET 1 60 0
Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | x Appendix A — Controller Tags

Description Modbus Register Register Bit
9 Left MDR Low MOSFET 2 60 1
10 Left MDR Low MOSFET 3 60 2
11 Right MDR Low MOSFET 1 84 0
12 Right MDR Low MOSFET 2 84 1
13 Right MDR Low MOSFET 3 84 2
14 Left Mechanical Break 60 6
15 Right Mechanical Break 84 6
16 Left Mechanical Break Control 60 7
17 Right Mechanical Break Control 84 7

ConveyLinx-Ai and ConveyLinx-Ai2 Controller Tags

ConveyLinx-Ai and ConveyLinx-Ai2 Controller Tags are the same as ConveyLinx Controller

Tags except Inputs, Outputs and the following two tags:

Controller Tag Name Modbus Register(s)
ServoPositionLeft INT 62
ServoPositionRight INT 86

ConveyLinx-Ai and ConveyLinx-Ai2 Inputs Tag

Tag Bit H Description Modbus Register Register Bit

0 Left Input, PIN2 35 0
2 Right Input, PIN2 35 2
4 Left Sensor Port, PIN4 35 4
6 Right Sensor Port, PIN4 35 6
16 Right Sensor Detect 36 0
17 Left Sensor Detect 36 1

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

ConveyLinx-Ai and ConveyLinx-Ai2 Outputs Tag

Description Modbus Register Register Bit
0 Left MDR RUN 260 0
1 Left MDR Direction 260 8
2 Right MDR RUN 270 0
3 Right MDR Direction 270 8
4 Left Control Digital Out 37 0
5 Right Control Digital Out 37 1
6 Left MDR Dig. Mode Enable 60 15
7 Right MDR Dig. Mode Enable 84 15
8 Left MDR Low MOSFET 1 60 0
9 Left MDR Low MOSFET 2 60 1
10 Left MDR Low MOSFET 3 60 2
11 Right MDR Low MOSFET 1 84 0
12 Right MDR Low MOSFET 2 84 1
13 Right MDR Low MOSFET 3 84 2
18 Left Set Pin2 As Output 37 5
19 Left Set Pin2 As Output 37 6

ConveyNet I/P (CNIP) Controller Tags

Controller Tag Name Modbus Register(s)
Input Controller Tags

Inputs DINT Physical Digital Inputs
FromUpstreamState INT 134
FromUpstreamTracking DINT 139, 140
FromDownstreamState INT 232

FromPLC DINT 266, 267
MylPAddress DINT 26, 27

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | x Appendix A — Controller Tags

Controller Tag Name Modbus Register(s)
RS485 InData INT[4] 40, 41, 42, 43
RS485 Errors INT 79
FirstLadderExec BOOL

Output Controller Tags

Outputs DINT Physical Digital Outputs
ToUpstreamState INT 116
ToDownstreamState INT 196
ToDownstreamTracking DINT 201, 202
ToPLC DINT 268, 269
RS485 OutData INT[4] 50, 51, 52, 53
RS485 Default INT[4] 60, 61, 62, 63
SlavelD INT 70

StartRead INT 71
NumToRead INT 72

Start Write INT 73
NumToWrite INT 74

Baudrate INT 75

RS485 Setings INT 76

Scanrate INT 77

RS485 Timeout INT 78

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X Aopendi B - Data Type Conversion [EEE

Appendix B — Data Type Conversion

Data conversions occur when you mix data types for the parameters within one instruction.

Instructions execute faster and require less memory if all the operands of the instruction use:
¢ The same data type.
¢ An optimal data type:
—In the “Operands” section of each instruction in this manual, a bold data type indicates

an optimal data type.
— The DINT data type is typically the optimal data types.

If you mix data types and use tags that are not the optimal data type, the controller converts the
data according to these rules

o If any of the operands is not a DINT value, then input operands convert to DINT.

e After instruction execution, the result (a DINT value) converts to the destination data
type, if necessary.

You cannot specify a BOOL tag in an instruction that operates on integer data types.

Because the conversion of data takes additional time and memory, you can increase the

efficiency of your programs by:

e Using the same data type throughout the instruction.
¢ Minimizing the use of the SINT or INT data types.

In other words, use all DINT tags, along with immediate values, in your instructions.

The following sections explain how the data is converted when you use SINT or INT tags or

when you mix data types.

SINT or INT to DINT

For those instructions that convert SINT or INT values to DINT values, the

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

“Operands” sections in this manual identify the conversion method.

Conversion Method Converts Data By Placing

Sign-extension the value of the left-most bit (the sign of the value) into each
bit position to the left of the existing bits until there are 32 bits.

Zero-fill zeroes to the left of the existing bits until there are 32 bits.

The following example shows the results of converting a value using sign-extension and zero-
fill.

Value 2#1111 1111 1111 1111 (-1)
Converts by sign- 2#1111 1111 1121 1111 1221 1111 1111 1111 (-1)
extension

Converts by zero-fill 2#0000_0000_0000_0000_ 1111 1111 1111 1111 (65535)

Because immediate values are always zero-filled, the conversion of a SINT or INT value may
produce unexpected results. In the following example, the comparison is false because Source

A, an INT, converts by sign-extension; while Source B, an immediate value, is zero-filled.

Ecill
- Equal
Source A “alued

ZmmnmITn
source B ZETTTTTT1I1111111T1

If you use a SINT or INT tag and an immediate value in an instruction that converts data by

sign-extension, use one of these methods to handle immediate values:

e Specify any immediate value in the decimal radix.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X Appendix B.- Data Type Conversion |28

ECL

- Equal

Source A “Walued

2111111111111
-1

Source B

¢ If you are entering the value in a radix other than decimal, specify all 32 bits of the
immediate value. To do so, enter the value of the left-most bit into each bit position to its
left until there are 32 bits.

ECL

|| Equal

Source A “Walued
2111111111111 1

Source B 211111111 1111111111

e Create a tag for each operand and use the same data type throughout the instruction. To
assign a constant value, either:

— Enter it into one of the tags.

— Add a MOV instruction that moves the value into one of the tags.

A ECi

- hlove — Equal
Source 1111111111111 Source A “alued,
2111111111111
Dest Taglnt source B Taglnt
2T 1111111 2111111111111

e Use a MEQ instruction to check only the required bits.

MEC
— Mask Equal I

Source Yalued,
2111111111111 11
hdask 2111111111111

Compare ZETTTTTT1TT111T1117

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG I X @

DINT to SINT or INT

To convert a DINT value to a SINT or INT value, the controller truncates the upper portion of the

DINT, if necessary. The following example shows the result of a DINT to SINT or INT

conversion.
DINT Value Converts To This Smaller Value
16#00010081 (65665) INT 16#0081 (129)

SINT 16#81 (-127)

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ Co NVEY OGI X Appendix C — Errors description [

Appendix C — Errors description

Critical errors description

Error # Description Type

1 Type is not ConveyLinx or ConveyNet Header
2 PLC program size is greater then PLC file Header
3 Wrong Ladder Program size Header
4 e Header
5 Wrong Tags size Header
6 e Header
7 Ladder Program Start, Ladder Program End or Tags Start Header

in not a DWORD address

8 Allocating RAM for Tags Error Header
9 Wrong Non Volatile Tags size Header
10 Non Volatile Tags size is greater then 96 bytes Header
100 Connection Tags Error Header
1 First instruction is not RUNG or missing RUNG or RND Prescan
2 Invalid Instruction Code Prescan
3 BST number is different then BND number in one Rung Prescan
4 BST number is different then NXB number in one Rung Prescan
5 Too low stack for BST/BND instructions Prescan
6 Bit Operand exceed 31 Prescan

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

7 Bit Operand Address >= Tags Size Prescan
8 Timer Operand Address >= Tags Size Prescan
9 Operand Address >= Tags Size Prescan
10 Operand Address must be Tag Address Prescan
11 Wrong JMP or JSR instructions Prescan
12 Wrong MCR (must be even count) Prescan
13 Ladder Program length error or missing twvo DWORDs after Prescan
END
14 Missing END of Ladder Program Prescan
15 Missing RUNG or RND (must be equal) Prescan
16 LBL is not first instruction of Rung Prescan
17 Operand Address is not aligned to WORD/DWORD Prescan
18 Wrong Operand Type (must be 0, 1, 2, 4 or 8) Prescan
20 Subroutine parameters exceed 31 Prescan
21 Wrong Address of JSR or FOR instructions Prescan
22 SBR must be first instruction in Rung Prescan
23 JSR parameters (inputs and outputs) are different Prescan
24 SBR parameters must be Tags Prescan
25 Only one SBR must be in routine Prescan
26 Each routine must finish with RET, RND or END Prescan
27 Shouldn't have SBR in Main routine Prescan
28 Before FOR(code 69) must be FOR(code 63) init Prescan
29 Routine address in FOR must start first Rung Prescan
30 FOR parameters must be Zero (4 DWORDS) Prescan

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ Co NVEY LOG | X Appendix C — Errors description [ee]

31 BRK or RET instructions can't be use in Main routine Prescan
32 Order Type (0, 1, 2) exceed 2 Prescan
33 In SWP if Source Operand is DWORD then Dest Operand Prescan

must be DWORD

34 Wrong Operand Type in SWP Prescan

Runtime errors description

Error # Description Type

100 The End of Stack Runtime

101 The numbers of JSR out parameters is different then in Runtime
parameters

102 FOR instruction Step Size is Zero Runtime

103 Divide by Zero Runtime

111 Incorrect Instruction - Online Runtime

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

Appendix D — Module-Defined Structures

Zone Structure

Mnemonic Data Type Description
.NU1 SINT Not used.
.NU2 SINT Not used.
State SINT

.ReverseState SINT

.NU3 SINT Not used.
.NU4 SINT Not used.
.Sensors SINT

.Motors SINT

.ZoneTracking DINT

.ToNextTracking DINT

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | X Appendix E — Merger Unit Example

Appendix E = Merger Unit Example

In this example is shown how to make a Merger Unit on picture below, using four ConveyLinx
modules in 192.168.205.XX subnet.

FLOW
A —
TO/FROM TO/FROM
- — DOWNSTREAM - SPURE Pss
- —-
2 ERSC i ERSC| .5 —na ERSC| Yy
192.168.205.23 / 192.168.205.22 102.168.205.20 &
ETHERNE T J>ETHERNET
p— \/ — —
e —
& & g |2 SPUR
=
ETHERNET
TO/FROM ' 2
UPSTREAM l 5
> g RJI2
MERGER UNIT [] 8 _-CONTROL PORT
CABLE
SE3 | WAKE UP

Step 1

Wire the ConveyLinx modules how is shown on the picture. Press Install button of the first
module (marked with 192.168.205.20 IP Address) and hold it pressed about 20 seconds. Install
procedure starts. When the install procedure is finished the ConveyLinx modules will be with IP
Addresses from 192.168.205.20 to 192.168.205.23.

Step 2

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

Put the ConveyLinx modules to corresponding mode depending of their purpose.

IP Address Purpose Mode

192.168.205.20 Spur control ZPA mode
192.168.205.21 Upstream to Merge zone control ZPA mode
192.168.205.22 Controls the Merge zone PLC I/O Controlled mode
192.168.205.23 Downstream to Merge zone control ZPA mode

Use EasyRoll, “Advanced Dialog” (F2)/“Connection” Tab to remove connection from
192.168.205.20 to 192.168.205.21 and vice versa.

Again use EasyRoll, “Connection” Tab to put 192.168.205.22 in PLC I/O Controlled mode, but
LEAVE CONNECTIONS to Upstream and Downstream module.

Publication ERSC-1200 Rev 2.2 — July 2016

Appendix E — Merger Unit Example

®) CONVEYLOG X

ConveylLinx Advanced Dialog e X|
19216820522 |3 | | +| metesh |
Special Services I HWw Conn. Configuration | Flex zone | Sensors I Extensions
Look Shead & Timing l Upgrade Connections I Metwork Services
Node No:
IP Address:
|1!32A18:5:.2i:|5 22
Subnet Mask:
Upstream I__F-‘.C 255 128 O Downstream
@+ Node No - ¢ Node No
|2 :Iv « |4 jv
" |P Address " |P Address
Ivaz 168 . 205, 21 |1+_ 168 205 23
UN FLC Dlsconnected
Outputs/Motors:
| Daon't Change _v_l
[Clear Connections
| [” Hardware Controlled l
[Slave Undo l e

Because you left the connections to Upstream and Downstream modules, in your PLC program

you may use the following Controller tags for:

Controller Tag Purpose

ToUpstreamState Automatically propagated over connection to Upstream module.
Use the next states to control Upstream module.

Value State

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide

CONVEYLOGIX (®)

6

EMPTY
SENDING/ACCEPTING
FULL_RUNNING
FULL_STOPPED

BUSY

ToDownstreamState

Automatically propagated over connection to Downstream

module. Same states values as above.

ToDownstreamTracking

Automatically propagated over connection to Downstream

module.

Step 3

To communicate with other modules (different from Upstream and Downstream) you may use

four special purpose tags in the Controller Tags. By default they are named Tag1, Tag2, Tag3,

Tag 4, but you may change their names and data type.

Scope: I Controller Y I

Tag Name Alias For Base Tag Data Type Init Yalue Style Description
[+ SpeedRightMTR INT 0|Decimal
[+ ServoControlLeft INT 0|Decimal
[+ ServoControlRight INT 0|Decimal
~ServoResetLeft BOOL 0|Decimal
~ServoResetRight BOOL 0|Decimal
~ServoCommandLeft BOOL 0|Decimal
~ServoCommandRight BOOL 0|Decimal
4] Tagl) SINT 0|Decimal
X | Tag2 SINT 0|Decimal
% | Tag3 SINT 0|Decimal
X & Tagd SINT 0|Decimal

To configure communication properties of these tags, click with mouse on the left most box

(where X shows unused, C shows Consumed tag and P shows Produced tag).

Publication ERSC-1200 Rev 2.2 — July 2016

@ CONVEY LOG | X Appendix E — Merger Unit Example

For receiving data from the Spur module rename “Tag2” to “FromSpur” and configured it as
consumed from 192.168.205.20. Select From UpstreamZone to receive data from the spur’s

Upstream zone (as this module have only one zone, which is always upstream).

Scope: | Controller j
x

Tag Mame le Description
[+ Tollpstreamskate |F Address: 0 I imal
[+ ToDownstreamstate I 192 168 205 . M irnal
[ToDownstreamTracking Cancel | imal
[+ ToPLC Type: imal
- f e e =
+-Speedle imal
[SpeedrightMTR " Produced il
[+ ServoControlLeft @ Consumed irnal
[+ ServaControlRight FrormsT o: irnal
~ServoResetLeft I Upstream Zone j irn.al
~ServoResetRight Register number irnal
~ServoCommandLeft ’ irnal
~SeryoCommandright I1 18 imal

P | Tospure il

C B [FromSpure Zone {04

& | Tag3 SINT 0|Diecirnal

% | FH Tagd SINT 0|Decimal

From the Spur module you need to receive both the state of the zone and the tracking. To do

this you’ll have to change the Data Type of this tag to “Zone” (Module-Defined structure data

type).

Publication ERSC-1200 Rev 2.2 — July 2016

ConveyLogix Programmer’s Guide CONVEYLOGI X @

seop [Corvale x
Tag MName
[+ TallpstreamState Data Type: J
[F] ToDownskreamsk. !ﬁ Cancel |
[F ToDownstreamTr. [EOOL 1
[+ ToPLC SIMT 1
[#] SensorPolarity IMT 1
[# SpeedLeftMTR. ?:HEH 1
[F SpeedRightMTR COLUMTER |
[+ ServoControlLeft 1
[+ ServoControlRigh 1
- ServoResetleft 1
- ServoResetRight |
'"SEWDCDmmandLE_ —Array Dimensions H
- [;?er;uc::ummandm Dim. 0 Diirm. 1 Dirn, 2 |
+ ToSpure . . z
C I [FromSpure IEI j IEI j IEI j 1
“ |[H Tag3 1
A | Tagd | | [SINT | 0| Crecirnal [

To control the Spur, rename “Tag1” to “ToSpur”, Configure it as Produced to 192.168.205.20.
As you want to control the Discharge side of this module, select “To Discharge”.

Leave data type of this tag SINT or INT.

Publication ERSC-1200 Rev 2.2 — July 2016

@ CONVEYLOGI X Appendix E — Merger Unit Example

Coope [Corioler 7] x
Tag Name IP Address: ityle Descripkion
[+ Tollpstreamstate I 192 168 205 . 20 erimal
[+ ToDownstreamstate Cancel | ecimal
[+ ToDownskream Tracking Type: erimal
[+ ToPLC ¢ Mot Used ecimal
[#] SensorPaolarity erimal
[+ SpeedLeftMTR. & Froduced ecimal
[+ SpeedRightMTR, " Conzumed ecimal
[+ SeryaContralLeft Frarn T a: ecimal
[ServoControlRight I Discharge j Ecimal
- ServoResetLeft Register number: ecimal
- SeryoResetRight ’ ecimal
- ServoCommandLeft 232 ecimal
~SeryoCommandright erimal
P I [ToSpure INT 0| Cecimal
| -FromSpure Zane I
& |[HTag3 SINT 0| Cecimal
& | Tagd SINT 0| Cecimal

Few details on the example:

All sensor and control port inputs are packed in controller tag Inputs. You may see description

for each bit in Description field.

You may use SensorPolarity tag to inverse polarity of each Sensor/Control input.
Setting ON on any of SensorPolarity bit inverts the appropriate Input bit.

In this example on Merge zone is used only one sensor, attached to right sensor port.

It's with a retro reflector, so it is needed to inverse Right Sensor Pin4 bit. Sensors also have ON

on sensor error pin when there is no error, so it is also needed to invert Right Sensor Pin3.

Using SensorPolarity tag helps you in 2 ways:

e You may use positive logic in your program (ON when there is product on the sensor
and OFF when there is no product, ON when there is gain error and OFF when there is
no error).

o LEDs on the module will show the correct state — Green ON when there is product, Red
ON when there is gain error.

You may see sensor polarity change in rung 0.

Publication ERSC-1200 Rev 2.2 — July 2016

ConveyLogix Programmer’s Guide CONVEYLOGI X @

On the Merge zone it is used only one sensor and one MDR (connected to the right motor port).

You may add second motor control and Jam sensor logic.
There is no JAM or error control logic in the example.

Take special care on tracking manipulation. You should take tracking from Spur/Upstream on
raising edge of the Merger sensor and place it in an internal tag.

You should prepare tracking for downstream module at the time you report to it
that you are in the EMPTY/SENDING state. At the same time you should clear
your internal tag to avoid tracking duplication if somebody throw product on the
merge zone.

In the FromUpstreamState/FromDownstreamState tags you should always
mask out the highest 8 bits (they are used in bi-directional operation and are
not part of the tracking). In this example it is done by simply copying these tags
in SINT tags.

Main Program Tags

Scope: IMain Program j

Taqg Mame flias Far Base Tag | Data Tvpe | Init Walue | Skvle Descripkion
- TransferFromStraight BOOL 0|Decimal
~ TransferFromSpur BOOL 0|Decimal

[+ fccepk TIMER. 0k

[+ Transfer TIMER. 0k

[+ Skate INT 0|Decirmal

[+ MergeTracking DIMT 0| Decimal
- SEnsOr Inpuks.& Inpuks. & Bl 0| Decimal
- DownskrearmEmphy EOOL 0|Decimal

[DowanSrearnskate SINT 0{Decimal
~TransferInProgress BOOL 0| Decimal
~SensorTrailing BOOL 0| Decimal
= RIGHTMDR. Outputs, 2 (Qubpuks, 2 |(BOCL 0| Decimal
- SensorR.aising EOOL 0| Decimal

[+ FromSkraightState SINT 0|Decimal

*

The values of Accept.PRE and Transfer.PRE are equal to 3000.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | X Appendix E — Merger Unit Example

Ladder Logic Program

My sensor is attached to right port and is with retroreflector, so | need to invert it.
Also | need to invert my SensorErrar

SensorPolarity B

O™y
] o

sensorPalarity 2
P

oS
Move INT tag to SINT to clear up & bits
RO
1 e -
Source FromUpstreamState
a
Dest FromStraightState
a
If There is nao transfers in progress, accumulate upstream to merge zane,
both straight and spur
TransferFromSpur W
] -
2 J/[howe
Source 3]
Dest ToSpure
a
TransferFromztraight WO
] |
3 y/[M owe
Source B

Dest TollpstreamState

a
If transfer in progress, start accept timer
TransferFromspur TN TN
1 L] i —
4 1t J/[. Tirmer On D;Iav t —{Em}
TransferFromStraight <Inputs.&> p':;;;t I:3|:|:|E|:|p|:| 0N
] [Accum 0

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

If tote doesn't arrive, clear transfer bits and MOR and prepare for new cicle.
Add some JAM logic here

Accept.DN TransferFromzpur
s T (v
TransferFromstraight
{ul
RIGHTMDR
KU'\
(R

=Dutputs. 2=

Move downstrearmn state to SINT tag to clear High 8 bits, and if = FULL RLMNMING
set Downstrearm Empty

b LES
EH e — Lezs Than (A=<B)
Source FromDownstreamState Source A DownSreamState
]]
Dest DownSreamState Source B 4
]

DownstreamEmpty

T
R

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

Appendix E — Merger Unit Example

Set Tracking from Straight or Spur on raising edge of sensaor
Sensor SensorRaising TransferFromStraight
1 L [1 1 [E |
7 1 L LONS | 1 L
<lnputs B
L Bl OO
M ove —

Source FromUpstreamTracking
a
Dest MergeTracking
a

TransferFromSpur

1 LC
1 L ‘
L Pl 1%
bl e -

Source FromSpure. ToMextTracking
a
Dest MergeTracking
a

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

If there is a tote on sensor, clear transfers and if downstrearn is empty and previous product
artived| singulation bit), run left MDR { Output.0)
Sensar TransferFromSpur
3 1 F qiy
=Inputs.B> TransferFramStraight
{ud
DownstreamBEmpty TransferlnProgress
N]
1 C 1
L WO RIGHTMWDR
M e L}
Source 4 =Outputs. 2=
Diest TaDownstreamState
o
DiownstreamBEmpty b 1%
] —
J/[- bl e)
TransferlnProgress puree
1k Dest ToDownstreamState
1 L 0
RIGHTMDR
(U3
=Dutputs. 2=

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ CONVEY LOG | X Appendix E — Merger Unit Example

YWhen Product is not already on the zone, inform downstream zone and prepare
tracking for it . Set singulation bit { Transfer in progress)

DEnsor mensorTrailing b O

1 []
J J//il: | ONS | Flowe
<lnputs B Source 1

Dest ToDownstreamState
]

RO
bl ove -

Source MergeTracking

]
Dest ToDownstreamTracking

a

RIGHTMDR
LU
=Dutputs 2=
TransferlnFrogress
e L ™
oL

Clear Internal Tracking AFTER “ou sent it to Downstream
Sensar

Pl O
10 H e _—
zlnputs B> Source 0

Dest MergeTracking

a
If product is sent to downstrearn, Start transfer timer
TransferlnProgress TOR
11 1 F) Tirmer On gemf :{{E%—_
irner ransfer
Freset 3000
Accum 0

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

If product arrives to downstreamn or transfer timer expires,

clear singulation bit { TransfernProgress) and tracking to downstream zone
TransferlnFrogress

EQ
12 izrtr Than or Egl fU
Source A DownSreamState
] A
Source B 4 Ml ove
Source 1]
Transter. ON Dest ToDownstrearnTracking
] E 0

If no transfers in progress and tote is on straith upstream, set transfer
and run MDRE to accept product. Release product with EMPTY (1)

SENSOF Ecl TransfarFrom=pur

13]/[Equal H

<Inputs.G= source A From3StraightState
| 0

Source B 5

TransferFromStraight TransferFromtraight

1t q
RIGHTMDR
(L3
<Clutputs. 2=

B
M ove —

Source 1

Dest TollpstreamState
1

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

14

If no transfers in progress and tote is an Spur upstream,
set transfer and run MDR to accept product

Sensor EqU
i
J/[Equal
<Inputs.G> Source & FrnmSpure.StatS
mource B g

Appendix E — Merger Unit Example

TransferFromspur

1t

TransferFromStraight

TransferFromSpur
e L ™,
wLS

11

RIGHTMDR
(LD
=Cutputs. 2=

WA
M ove —

Source 1

Dest ToSpure
]

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG X

Appendix F — Simple Motor Control Example with
Servo Commands

Appendix F = Simple Motor Control Example with

Servo Commands

In this example is shown how to make a Right Angle Transfer (RAT), using simple motor
control.

Home Position Up Position

—_— Y =\ = =

-/ Lift Motor
Home Sensor

Control Up/Down Control Up/Down

There is one sensor, named Home Sensor and one switch — Control Up/Down.

Home Sensor is connected to Right Control Port, PIN4 which corresponds to “Input.7” controller
tag. In ConveyLogix program we create the tag “HomeSensor”, which is an alias of “Input.7”.
Control Up/Down switch is connected to Left Control Port, PIN4 which corresponds to Input.5
controller tag. “Control_UpDown” tag is an alias of Input.7.

Tags “StateUp” and “StateDown” indicate the end position of the RAT lift.

“LiftOffset” tag is the distance, which RAT lift has to move to reach the up position. In this

example the Lift mechanism travels 30 mm that corresponds to 300 pulses.

In this example, the following Controller Tags are used:

“ServoCommandLeft” — when set, Lift motor starts to move upward (counter-clockwise) to the
position which is set in “ServoControlLeft”.

“ServoControlLeft” — contains the pulses that the left motor has to process.

“ServoResetLeft” — clears the pulses that the left motor has to process.

“ServoReadyLeft” — indicates that the pulses are reached.

Publication ERSC-1200 Rev 2.2 — July 2016

ConveylLogix Programmer’s Guide CONVEY LOG | x @

Main program tags and routine are the following:

Scope: I b ain Program j

Tag MName Alias For | Base Tag | Dakta Type | Inik Value | Stvle Descripkion
[FLiftffaat INT 300(Decimal 300 pulses = 30 mm
~Statelp BOOL 0| Decimal
- Stakelown BOOL 0|Decimal
- Homesensar Inputs,7 |Inputs, 7 BOOL 0|Decimal |RightCaontrolPort, pind
~Contal_UpDown |Inputs,S | Inputs. S BOOL 0|Decimal |0-Home; 1-Golp
*

Go Up Motor direction -= CCW

HomeSensar Contol_UpDaown A Statelown
1 L 1 F PO
0 1 T 1 T Move . Co
<Inputs 7= <Inputs 5= Source L'ﬂDﬁESDEDt
RightCantralPort, pind O-Horme; 1-Gollp Dest SaraControlleft
a
ServoCommandLeft
(L)
Caontal_UpDaown ServoCommandLeft
1t W
<Inputs.5> SenoResetLeft
0-Harme; 1-Gaollp P
o

o Down Motor Direction -= CyWY

HomeSensor Contol_UpDown Cutputs.0

1 1t 1t <>
<lnputs. 7> <lnputs.5> Left MIDR RLUMN
RightCantralPort, pind O-Home; 1-Gollp SeraCammandLeft

{3

SenoReadyleft Statellp
1 C o0
1 C wo S

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG|x 2ovendiue=Smi oor Cono Exampie iy

When Lift is in Home position (“HomeSensor” is true) and Control switch is off
(“Control_UpDown” is false) the next operations are processed:

“ServoCommandLeft” is unlatched — left motor stops its movement.

“ServoResetLeft” is set — the pulses in “ServoControlLeft” are reset.

“StateDown” is set — Lift is in Home position.

When Lift is in Home position (“HomeSensor” is true) and Control switch is turned on
(“Control_UpDown” is set) the next operations are processed:

To “ServoControlLeft” 300 pulses are set.

“ServoCommandLeft” is latched — the left motor starts to move upward

“StateDown” is set — Lift is still in Home position.

When Lift leaves Home Sensor (“HomeSensor” is changed to false) and Control switch is still on
the motor continues to run counter-clockwise (upward) until it reaches the pulses. When Lift
motor reaches the pulses, “ServoResetLeft” is reset and “StateUp” is set.

When Lift is in Up position (“HomeSensor” is false) and Control switch is turned off
(“Control_UpDown” is reset) the next operations are processed:

“Output.0” is true — left motor starts to move downward.

“ServoCommandLeft” is unlatched — left motor servo command is cleared.

When Lift reaches Home Sensor, left motor stops its movement.

During the motor movement “StateUp” and “StateDown” are false.

The following is the same example written in Structured Text:

First you have to create a function block in Structured Text (in this example it is name “RAT”).

Publication ERSC-1200 Rev 2.2 — July 2016

ConveyLogix Programmer’s Guide CONVEYLOGI X @

RAT tags:
Tag Name flias For Base Tag | Daka Type | Init Walue | Style Descripkion
EI-Input
~HomeSensor BOCL 0|Decimal
- Conkal_UpDawn BOOL 0|Decimal
- ServoReady BOOL 0|Decimal
*
EI-Output
~State_Down BOOL 0|Decimal
~5State_lp BOOL 0|Decimal
~Runtokor BOCL 0|Decimal
[ServoControl INT 0|Decimal
- ServolCommand BOCL 0|Decimal
- ServoReset BOCL 0|Decimal
*
- ImOuk
*
[l Skatic
! ELiFeCFFset INT 300|Decimal | 300 pulses = 30 mm
*
RAT Routine:

ServoReset ;= 0;
State_Down := 0;
State_Up :=0;
RunMotor := 0;
IF HomeSensor =1 THEN
State_Down := 1,
IF Contol_UpDown = 1 THEN
ServoCommand = 1;
ServoControl := LiftOffset;

ELSE
ServoCommand := 0;
ServoReset = 1;
END_IF;
ELSE
IF Contol_UpDown =1 THEN
IF ServoReady = 1 THEN
State_Up :=1;
END_IF;
ELSE
RunMotor :=1;
ServoCommand := 0;
END_IF;
END_IF;

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOG|x 2ovendiue=Smi oor Cono Exampie iy

Second, you have to create an instance of “RAT” function block (named “tbRAT”) in Main Tags:

Scope: I b ain Program j

Tag Mame Alias For Base Tag | Data Tvpe | Init Yalue | Skvle Descripkion
~Statelp BOOL 0|Decimal
- Stakebown BOOL 0|Decimal
- HomeSensar Inputs.7 Inputs.7 |[BOOL 0|Decimal RightControlPart, ping
~Conkal_UpDaown | Inpuks, 5 Inputs.5 |[BOOL 0|Decimal 0-Haome; 1-Golp
[+ FbRAT RAT {..t
*

And third, you have to initialize “Input” tags of “RAT” function block, call an instance and then

return the values of “Output” tags in Main Program.

HomeSensor fhREAT. HomeSensor
2 i C T
1 o
<lnputs.7 =

RightControlPort, pind
Contol_UlpDawer thRAT. Contal_UpDowen

1 [C £y
1 (R
<lnputs. 5
O-Hame; 1-Gallp
seroReadyleft fBRAT. zermoReady
1 L £y
1 LR
JFB
3 Jump to Function Block [
FE Tag fhRAT

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | X @

fbRAT Runhotor Cutputs.0
4 1 [N
1 T L
Left WMIDRE FLIRM
thEAT State_Lp statellp
1 L T
1 T o
fbRAT. State Diown statelown
1 [T
1 L (R
thRAT. SemvaCommand SeroCommandleft
1 L Oy
1 T (R
thRAT SernvoReset SeroResetleft
1 L T
1 T o
B
Ml e -
Source ThREAT. ServoControl
]
Dest ServoControlLeft
]

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ co NVEY LOG | X Appendix G — Configuration Screen Structure

Appendix G — Configuration Screen Structure

Configuration Screen Structure is designed to provide an easy way to configure a module via

EasyRoll software.

To open the view of the configuration structure, double-click on “Configuration Screen Structure”

in Project Tree:

#-_1 Revision

El{:l Tasks

¢ -0 Main Task
#-{Z1 Main Program

----- {27 Function Blocks

: -7 Standard Function Blocks
=] Data Types
- Predefined

----- 23 Uszer-Defined

-2 Module-Defined

----- I Configuration Screen Stucture

Blank tags view is opened. Configuration Structure view is similar to User-Defined type tags

view:
EE Configuration =10l x|
Tag Mame Conkral Type | Control Properties | Data Type | Inik Walue | Skyle | Description | Dimensionion

*

Tags are added, edited and deleted as the same way as User-Defined type tags.
Data types of tags in Configuration Screen Structure can only be simple data types (BOOL,
SINT, INT and DINT).

Tags may be divided into two categories, according to EasyRoll software usage:

¢ Normal — for monitoring only.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

e Configuration Non-volatile — for configuration and monitoring. These tags are power
independent and use the non-volatile memory of the module. After power cycle, their
values remain unchanged.

To make a tag Configuration Non-volatile, right-click on the cell at the first column and select

“Configuration Non-volatile” menu:

Tag Mame Control Type | Control Properties Data Tvpe | Init Value | Skyle Descri]
BOOL 0|Decimal | Timer is
Min = 1000; Max = 10000 |DINT a000|Decimal | Timer p
___- _ _ DIMT 0|Decimal | Timer e
C |H-Phase Selection Reset = 0; Execute = 1., |INT 0|Decimal |Phase
- TimerDone Check. BOOL 0|Decimal | Timer is

+

Configuration Non-volatile tags are marked with sign “C” in the first column.

“Control Type” field defines how the tag will appears in EasyRoll software. For some Control
Types you may add Control Properties.
When you click on this field, a combo-box with three options appears:

e Check — check-box. It is suitable for BOOL data types.

o Number — edit-box. It is suitable for SINT, INT and DINT data types.
With left-click on “Control Properties” cell you may add minimum and/or maximum values for the
tag.
x

TimerPreset: DINT

Min ' alue: |1nun oK. |
b & W alue: I‘IEIIZIIZIIZI Cancel |

When a tag is Configuration Non-volatile in EasyRoll software “Set” button is displayed next to
the edit-box. “Set” button is used for changing tag values. When the value is not in defined
range a message box appears.

e Selection — combo-box. It is suitable for SINT, INT and DINT data types.
With left-click on “Control Properties” cell you may add, edit and delete selection strings of the

tag.

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

@ co NVEY LOG | X Appendix G — Configuration Screen Structure

ComboBox Properties il

Phasze: INT
String | Y alue |
Fieset . Add..
Enecute 1
Dane 2

Delete

Edit...

i

(] I Cancel |

To add a new selection string, click on Add button.

To change the string name or value, select the desired string and then click on Edit button.
To delete the string, select the desired string and then click on Delete button.

string x|

String:
IEHecute 0k I
W alue: Cancel |

|1

When the value of the tag does not correspond to any string, the selection in EasyRoll software

is empty.

The text written in “Description” field will appear in the control tool tip in EasyRoll software.

The text written in “Dimension” field will appear after the control in EasyRoll software.

To work with Configuration Structure you have to add a tag in Main Tags with “Configuration”
data type. You may create only one instance of “Configuration” data type.
When you change a field of Configuration Structure from Main Tags view, it is will be reflected in

the corresponding field in Configuration Screen Structure. And vice versa, if a field from

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveyLogix Programmer’s Guide CONVEYLOGI X @

Configuration Screen Structure tag is changed, it is reflected in the Configuration Structure

instance in Main Tags.

Example:
In this example a timer will be started, monitored and reset, using Configuration Structure.

The following tags in Configuration Screen Structure are added:

Tag Mame Control Type | Control Properties | Data Type | Init Yalue | Stvle Description Dirmensionion
~Run Check, BOOL 0|Decimal | Timer is running
C p| [TimerPreset [Mumber Min = 1000; Max .., |DINT 3000 |Decimal | Timer preset va... \ms
[Timervalue |Mumber DIMT 0|Decimal |Timer evaluate. .. (ms
C |#-Phase Selection Reset =0; Execu.., |INT 0|Decimal |Phase of the timer
~TimerDone | Check, BOOL 0|Decimal |Timer is done
*

“‘Run”, “TimerValue” and “TimerDone” are used for monitoring only.
“‘Run” tag indicates whether the timer is running.
“TimerValue” tag displays timer evaluated value in milliseconds.

“TimerDone” tag is set when timer expiries.

“TimerPreset” and “Phase” tags are configurable from EasyRoll software. They are power
independent and use controller’'s Flash memory.

“TimerPreset” tag contains the timer preset value in milliseconds.

“Phase” tag controls the timer execution. When tag value is “0”, the timer will reset. When tag

value is “1”, the timer will start. When timer expiries, “Phase” tag value will set to “2”.

A tag named “ExampleConfig” with “Configuration” data type is added in Main tags.

Scope: I b ain Program j

Tag Mame flias For | Base Tag | Data Tvpe Init Yalue | Skwle Description
B| = ExampleConfig Configuration 1.k
-~ ExampleConfig.Run Bl 0|Decimal — [Timer is running
M [+ ExampleConfig, TimerPreset DIMT 8000 |Decimal |Timer preset ...
[+ ExampleCaonfig, Timertalue DIMT 0|Decimal — [Timer evaluate, .,
M [+ ExampleConfig.Phase INT 0|Decimal |Phase af the k...
- ExampleConfig, TimerDaone Bl 0|Decimal |Timer is done
[+ Tirmer TIMER. 1.k
*

The sign “N” shows that the tags are Non-volatile.

Publication ERSC-1200 Rev 2.2 — July 2016

@ co NVEY LOG | X Appendix G — Configuration Screen Structure

The next picture shows the example Main Program:

Ecil Tirmer

0o H Egual {RES}
Source A ExampleConfig. Phase
0
Source B 0

Phasze of the tirmer

ECL RO ExampleConfig. Run
1 Equal — hlove {7
Source A ExampleConfig. Phase Source ExampleConfig. TimerFraset Tirmer is running
2000
Source B 1 Dest Timer.PRE
0

Phase of the timer

ExampleConfig.Run TOM
2] [. Tirmer On Delﬁy —{EN)—
Tirer is running Timer Timer _‘iDN}_
) Preset 0
ExampleConfig. TimerDone ACCum 0
1 C
1 L
Timer iz dane
M
3 hove -
Saurce Timer. ACC
0
Dest ExampleConfig. Timervalue
0
Timer evaluated value
Timer.DN ExampleConfig. TimerDone BT
4] [-, hlove]
Source 2

Tirmer 15 done

Dest ExampleConfig. Phase
0

Phase of the tirmer

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

ConveylLogix Programmer’s Guide CONVEY LOG | x @

In EasyRoll software the controls of Configuration Structure are shown as follows:

Fam EasyRoll ¥ersion 4.3 Test9 (US) Current IP: 192.168.202.21 _1Ol x|
Network [132 188 202w Biinkawink
- L =
K 1 : /e | = Tmd =
From Mode #: ToMode #: + Set Al | Hefiesh Advanced e ?5 ':
) _ Dialog — =
Serial Mumber, |'| 24551 Clage | oL i,o ;_-- _t e
ontrolle
; - |55_25 - |2 ou can use both nommal and
Firmnwaare Yersion: Hardware Revision: crossover cables.
Left Link € @ Right Link |
— ExampleConfig
¥ Fun There is a PLE programm inside, m
X RUMMING! (PLCDATA_ ExampleConf)
TimerPreset |30|:|0 | ms Set
Timer alue |5521 | ms 7
e E—
[0 inerDane
— Left MDA : Error — Right MDR : Error
Motar Type: ISenerg_l,l BOOST j S| | Sengor Connection Eror: € | | | Matar Type: |F'u|se Roller 28w j Setall | Sengor Connection Emar: &
. o . o
Brake Method: IServo Brake2 "I Setall | Sy (el S0t Brake iethod: IServo Brake2 Yl Setall | St B E
Sens Gain En Counter: 1] Sens Gain Enr Counter: 1]
Closed loop: [Setal Closed loop: W Setall
: I‘I oo 3 : IED %
speed “ il sl potor Connector Eror;. & spesd ¢ il ol Motor Connector Eror. @
T ATOw: I Cwf j‘ Setdl | Yoltage diop [<18v) & L /TCw: IEE'W jv Setél | Voltage diop (<18v]); @
Acceleration: |7.50 sEC Set | Sekd| | Mator shart-circuit. @ || | Acceleration: I?ED pulzez Set | Setal | WMaotar short-circuit, &
Owver cument, & Over cument; &
Deceleration: |7.50 380 Set | Set&lll Overoad: © || |DEceleration: |7'5D pulzes Set | 53”—"-"' Overoad:
Current: IU T Motar stalled: @ || | Cument: IU i Motor stalled: &
Motor Sensor Enor; & tdator Sengor Emor &
Operating time: |299? ik varhest © Operating time: I'I 268 it verheat. &
R werheat: R werheat:
Calculated MD HI—33 q u ; @ || |Caloulated MDHI—33 q u ; o
Tanpesine C ﬁ Matar Life Errar: ——— C ﬁ Matar Life Errar:
I atar Ermar Counter; 1] Fotor Emar Counter: 2
todule . |39— o Module . I38— °c
Temperature: Overvoltage(>30V): @ | | | Temperature: Overvolage(>30v) &

Publication ERSC-1200 Rev 2.2 — July 2016

OPULSEROLLER

®) CONVEYLOGIX notes: |8

Notes:

Publication ERSC-1200 Rev 2.2 — July 2016

PULSEROLLER

WWW.PULSEROLLER.COM
SALES@PULSEROLLER.COM
SUPPORT@PULSEROLLER.COM

Publication ERSC-1200 Rev 2.2 — July 2016

	Important User Information
	Summary of Changes
	Global Contact Information
	Table of Contents
	Getting Started
	Screen Areas
	Title Bar
	Menu Bar
	Toolbar
	Ladder Instruction Bar
	Project Bar
	Tags View
	Ladder View
	Output Window
	Status Bar

	Create a Project
	Project Organization
	Revision
	Tasks
	Data Types

	Save, Close and Open a Project
	Configure a Controller

	Organize Tags
	Defining Tags
	Scope
	Tag Type
	Data Type

	Create a Tag
	Create an Array
	Assign Alias Tags
	Non-Volatile Tag
	Produced and Consumed Tags
	Assign a Produced Tag
	Assign a Consumed Tag

	Delete a Tag

	Program Ladder Logic
	Definitions
	Write Ladder Logic
	Arrange the Input Instructions
	Arrange the Output Instructions

	Enter Ladder Logic
	Append an Element
	Append a Rung

	Assign Operands
	Editing Ladder Logic
	Edit a Rung
	Edit an Element
	Edit an Operand

	Enter Rung Comment
	Verify the Routine

	Function Blocks
	Creating a Function Block
	Function Block Parameters
	Function Block Program
	Instances of Function Blocks
	Function Block Calls

	Ladder Logic Instructions
	Bit Instructions
	Examine If Closed (XIC)
	Examine If Open (XIO)
	Output Energize (OTE)
	Output Latch (OTL)
	Output Unlatch (OTU)
	One Shot (ONS)
	One Shot Rising (OSR)
	One Shot Falling (OSF)

	Timer and Counter Instructions
	Timer On Delay (TON)
	Timer Off Delay (TOF)
	Retentive Timer On (RTO)
	Count Up (CTU)
	Count Down (CTD)
	Reset (RES)

	Compare Instructions
	Limit (LIM)
	Mask Equal to (MEQ)
	Equal to (EQU)
	Not Equal to (NEQ)
	Less Than (LES)
	Greater Than (GRT)
	Less Than or Equal to (LEQ)
	Greater than or Equal to (GEQ)

	Compute/Math Instructions
	Add (ADD)
	Subtract (SUB)
	Multiply (MUL)
	Divide (DIV)
	Modulo (MOD)
	Negate (NEG)
	Absolute Value (ABS)

	Move/Logical Instructions
	Move (MOV)
	Masked Move (MVM)
	Bitwise AND (AND)
	Bitwise OR (OR)
	Bitwise Exclusive OR (XOR)
	Bitwise NOT (NOT)
	Clear (CLR)

	Module Specific Instructions
	Read Register (RDR)
	Write Register (WRR)
	Write Register Comm (WRC)
	Distance On Left (DOL)
	Distance On Right (DOR)

	Program Control Instructions
	Jump (JMP)
	Label (LBL)
	Jump to Function Block (JFB)
	Return from Function Block (RFB)

	Program Structured Text
	Assignment
	Expression
	Arithmetic Operators and Functions
	Relational Operators
	Logical Operators
	Bitwise Operators
	Modbus Register Operators
	Order of Execution

	Constructs
	IF...THEN
	CASE...OF
	FOR…DO
	RETURN

	Function Block
	Standard Function Blocks
	User-defined Function Blocks

	Comments

	Download a Project into Controller
	Debug Mode
	Enter the Debug Mode
	Change the Controller Mode
	Watch and Change Boolean Tags
	Watch and Change Non-boolean Tags
	Leave the Debug mode

	Appendix A – Controller Tags
	ConveyLinx Controller Tags
	ConveyLinx-Ai and ConveyLinx-Ai2 Controller Tags
	ConveyNet I/P (CNIP) Controller Tags

	Appendix B – Data Type Conversion
	SINT or INT to DINT
	DINT to SINT or INT

	Appendix C – Errors description
	Appendix D – Module-Defined Structures
	Appendix E – Merger Unit Example
	Appendix F – Simple Motor Control Example with Servo Commands
	Appendix G – Configuration Screen Structure
	Notes:

