

Version 2.2
July 2016

Publication ERSC-1200

3 Important User Information

Publication ERSC-1200 Rev 2.2 – July 2016

Important User Information

ConveyLinx ERSC modules contain ESD (Electrostatic Discharge) sensitive

parts and components. Static control precautions are required when

installing, testing, servicing or replacing these modules. Component

damage may result if ESD control procedures are not followed. If you are not

familiar with static control procedures, reference any applicable ESD

protection handbook. Basic guidelines are:

 Touch a grounded object to discharge potential static

 Wear an approved grounding wrist strap

 Do not touch connectors or pins on component boards

 Do not touch circuit components inside the equipment

 Use a static-safe workstation, if available

 Store the equipment in appropriate static-safe packaging when not in
use

Because of the variety of uses for the products described in this publication,

those responsible for the application and use of this control equipment must

satisfy themselves that all necessary steps have been taken to assure that

each application and use meets all performance and safety requirements,

including any applicable laws, regulations, codes, and standards

The illustrations, charts, sample programs and layout examples shown in

this guide are intended solely for purposes of example. Since there are

many variables and requirements associated with any particular installation,

Insight Automation Inc. does not assume responsibility or liability (to include

intellectual property liability) for actual use based on the examples shown in

this publication

Reproduction of the contents of this manual, in whole or in part, without

written permission of Insight Automation Inc. is prohibited.

4 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Summary of Changes

The following table summarizes the changes and updates made to this document since the last

revision

Revision Date Change / Update

1.5 April 2014 Updates Global Contact Information

1.6 June 2014 Added Function Block and Structured Text Sections

2.1 April 2016
Added Standard Function Blocks, ConeyLinx-Ai Controller Tags,

Appendix F

2.2 July 2016
Updated ConeyLinx and ConeyLinx-Ai Controller Tags, Added

ConeyLinx-Ai2 Controller Tags and Appendix G

Global Contact Information

5 Table of Contents

Publication ERSC-1200 Rev 2.2 – July 2016

Table of Contents

Important User Information.. 3

Summary of Changes ... 4

Global Contact Information.. 4

Table of Contents .. 5

1. Getting Started ... 9

1.1 Screen Areas .. 9

1.1.1 Title Bar .. 9
1.1.2 Menu Bar ...10
1.1.3 Toolbar ..12
1.1.4 Ladder Instruction Bar ..12
1.1.5 Project Bar ...12
1.1.6 Tags View ..12
1.1.7 Ladder View ...12
1.1.8 Output Window ..12
1.1.9 Status Bar ..12

1.2 Create a Project .. 13

1.3 Project Organization ... 13

1.3.1 Revision ...14
1.3.2 Tasks ...14
1.3.3 Data Types ..14

1.4 Save, Close and Open a Project ... 15

1.5 Configure a Controller ... 16

2.0 Organize Tags ... 17

2.1 Defining Tags .. 17

2.1.1 Scope ..17
2.1.2 Tag Type ...17
2.1.3 Data Type ..18

2.2 Create a Tag ... 18

2.3 Create an Array .. 24

2.4 Assign Alias Tags ... 27

2.5 Non-Volatile Tag ... 29

2.6 Produced and Consumed Tags... 30

2.6.1 Assign a Produced Tag ..32
2.6.2 Assign a Consumed Tag ..33

2.7 Delete a Tag ... 34

6 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

3.0 Program Ladder Logic.. 37

3.1 Definitions ... 37

3.2 Write Ladder Logic .. 39

3.2.1 Arrange the Input Instructions ..40
3.2.2 Arrange the Output Instructions ...41

3.3 Enter Ladder Logic.. 41

3.3.1 Append an Element ...42
3.3.2 Append a Rung ..48

3.4 Assign Operands .. 49

3.5 Editing Ladder Logic ... 53

3.5.1 Edit a Rung ..53
3.5.2 Edit an Element ...53
3.5.3 Edit an Operand ...56

3.6 Enter Rung Comment ... 57

3.7 Verify the Routine ... 57

4.0 Function Blocks.. 59

4.1 Creating a Function Block ... 59

4.2 Function Block Parameters ... 60

4.3 Function Block Program .. 61

4.4 Instances of Function Blocks .. 62

4.5 Function Block Calls ... 62

5.0 Ladder Logic Instructions ... 67

5.1 Bit Instructions .. 67

5.1.1 Examine If Closed (XIC) ..68
5.1.2 Examine If Open (XIO) ...70
5.1.3 Output Energize (OTE) ..72
5.1.4 Output Latch (OTL) ..73
5.1.5 Output Unlatch (OTU) ..74
5.1.6 One Shot (ONS) ..75
5.1.7 One Shot Rising (OSR) ..77
5.1.8 One Shot Falling (OSF) ...80

5.2 Timer and Counter Instructions ... 82

5.2.1 Timer On Delay (TON) ...83
5.2.2 Timer Off Delay (TOF) ...87
5.2.3 Retentive Timer On (RTO) ...91
5.2.4 Count Up (CTU) ...95
5.2.5 Count Down (CTD) ..99
5.2.6 Reset (RES) .. 103

5.3 Compare Instructions .. 105

7 Table of Contents

Publication ERSC-1200 Rev 2.2 – July 2016

5.3.1 Limit (LIM) .. 106
5.3.2 Mask Equal to (MEQ) ... 110
5.3.3 Equal to (EQU) .. 113
5.3.4 Not Equal to (NEQ) .. 115
5.3.5 Less Than (LES) .. 117
5.3.6 Greater Than (GRT) ... 119
5.3.7 Less Than or Equal to (LEQ) ... 121
5.3.8 Greater than or Equal to (GEQ) ... 123

5.4 Compute/Math Instructions ... 125

5.4.1 Add (ADD) ... 126
5.4.2 Subtract (SUB) ... 128
5.4.3 Multiply (MUL) .. 130
5.4.4 Divide (DIV) ... 132
5.4.5 Modulo (MOD) ... 134
5.4.6 Negate (NEG) .. 136
5.4.7 Absolute Value (ABS) .. 138

5.5 Move/Logical Instructions.. 140

5.5.1 Move (MOV) .. 141
5.5.2 Masked Move (MVM) ... 143
5.5.3 Bitwise AND (AND) .. 146
5.5.4 Bitwise OR (OR) .. 148
5.5.5 Bitwise Exclusive OR (XOR) .. 150
5.5.6 Bitwise NOT (NOT) .. 152
5.5.7 Clear (CLR) ... 154

5.6 Module Specific Instructions ... 155

5.6.1 Read Register (RDR) ... 156
5.6.2 Write Register (WRR) .. 158
5.6.3 Write Register Comm (WRC) ... 160
5.6.4 Distance On Left (DOL) ... 162
5.6.5 Distance On Right (DOR) .. 165

5.7 Program Control Instructions .. 168

5.7.1 Jump (JMP) ... 169
5.7.2 Label (LBL) .. 171
5.7.3 Jump to Function Block (JFB) .. 172
5.7.4 Return from Function Block (RFB) ... 173

6.0 Program Structured Text .. 175

6.1 Assignment ... 176

6.2 Expression .. 177

6.2.1 Arithmetic Operators and Functions ... 178
6.2.2 Relational Operators .. 180
6.2.3 Logical Operators .. 181
6.2.4 Bitwise Operators .. 183
6.2.5 Modbus Register Operators ... 184
6.2.6 Order of Execution ... 184

8 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

6.3 Constructs .. 186

6.3.1 IF...THEN ... 187
6.3.2 CASE...OF ... 190
6.3.3 FOR…DO .. 193
6.3.4 RETURN .. 196

6.4 Function Block .. 197

6.4.1 Standard Function Blocks .. 199
6.4.2 User-defined Function Blocks .. 206

6.5 Comments .. 207

7.0 Download a Project into Controller ... 209

8.0 Debug Mode .. 211

8.1 Enter the Debug Mode .. 211

8.2 Change the Controller Mode ... 212

8.3 Watch and Change Boolean Tags .. 213

8.4 Watch and Change Non-boolean Tags ... 215

8.5 Leave the Debug mode ... 216

Appendix A – Controller Tags ... 217

ConveyLinx Controller Tags .. 217

ConveyLinx-Ai and ConveyLinx-Ai2 Controller Tags .. 219

ConveyNet I/P (CNIP) Controller Tags .. 220

Appendix B – Data Type Conversion .. 223

SINT or INT to DINT .. 223

DINT to SINT or INT .. 226

Appendix C – Errors description .. 227

Appendix D – Module-Defined Structures ... 230

Appendix E – Merger Unit Example .. 231

Appendix F – Simple Motor Control Example with Servo Commands 247

Appendix G – Configuration Screen Structure ... 253

Notes: ... 259

9 Getting Started

Publication ERSC-1200 Rev 2.2 – July 2016

1. Getting Started

1.1 Screen Areas
To understand more easily how to work with ConveyLogix Programmer software, main screen

areas are pointed on the picture and described below:

1.1.1 Title Bar

Title Bar displays the information of working project (file with extension .clp), selected view (Main

Program or Tags), controller IP Address and Debug information (described in point 6).

10 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

1.1.2 Menu Bar

 File Menu Description Icon Shortcut

New creates an untitled project Ctrl+N

Open opens an existing project Ctrl+O

Close closes the current project

Save saves the current project Ctrl+S

Save As saves the current project to a different file

Print
prints ladder logic and/or Main Program
Tags Ctrl+P

Print Preview
preview ladder logic and/or Main Program
Tags before printing

Print Setup setup printer properties

Exit quits the application

Edit Menu Description Icon Shortcut

Undo undo the last action Ctrl+Z

Cut cuts the selection and put it to Clipboard Ctrl+X

Copy copies the selection and put it to Clipboard Ctrl+C

Paste
pastes the Clipboard content to the
selected location Ctrl+V

Edit menu commands apply only to Main Program (Ladder View) operations.

11 Getting Started

Publication ERSC-1200 Rev 2.2 – July 2016

View Menu Description Icon

Toolbar hides/displays the Toolbar

Status Bar hides/displays the Status Bar

Project Bar hides/displays the Project Bar

Zoom In
increase the zoom level of the Main Program (Ladder
View)

Zoom Out
decrease the zoom level of the Main Program (Ladder
View)

Controller/Logic
Menu

Description Icon

Verify Program
Verifies the Ladder program. The result of the operation
is displayed in Output window.

Download Program
downloads the project to controller with chosen IP
Address

Debug
puts ConveyLogix Programmer in Debug mode
(described in point 6)

Stop Debugging
puts ConveyLogix Programmer in Normal (editable)
mode

Program Mode
puts the controller in Program mode. In this mode
controller stops execute the Ladder program

Run Mode
puts the controller in Run mode. In this mode controller
executes the Ladder program

Controller
Properties

opens the dialog box to change Controller Type and/or its
IP Address (described in point 1.5)

Program Mode and Run Mode menus are active only in ConveyLogix Programmer Debug mode.

Window Menu

Window Menu contains the standard Windows menus to navigate between Main Program

(Ladder View) and Tags (Tags View).

Help Menu Description Icon

Help Topics opens the ConveyLogix Programmer user’s guide

About
opens the dialog box to display ConveyLogix
Programmer version information

12 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

1.1.3 Toolbar

Toolbar contains the shortcuts to some of the menus:

Icons meaning is described above in section 1.1.1 Title Bar.

1.1.4 Ladder Instruction Bar

Ladder Instruction Bar is enabled only in Main Program (Ladder view). It divided on several tabs

by categories. Every tab contains relevant Ladder Instructions buttons as described in section

5.0 Ladder Logic Instructions).

1.1.5 Project Bar

Project Bar contains the information of the current project as described in section 1.3 Project

Organization).

1.1.6 Tags View

Tag View is the window where you edit your tags.

1.1.7 Ladder View

Ladder view is the window where you edit your ladder logic.

1.1.8 Output Window

Output window displays the results of Download Program, Verify Program, runtime errors, etc.

1.1.9 Status Bar

The right side of the Status Bar provides ongoing status information and prompts as you use the

software. The left side of the Status Bar provides information about Caps Lock, Num Lock and

Scroll Lock keys.

13 Getting Started

Publication ERSC-1200 Rev 2.2 – July 2016

1.2 Create a Project

From the File menu, select New or click on icon. The next dialog appears.

 Type the IP Address of the controller you need to work with.

 Choose the controller type – ConveyLinx or ConveyNet.

 Press OK button and a project called “Untitled” will be created.

1.3 Project Organization
The project organization is shown on Project Bar.

14 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

1.3.1 Revision

“Major” and “Minor” contain values as to the major and minor versions of the project and these

fields are editable. Build contains a value which increments automatically during every Save

operation.

1.3.2 Tasks

ConveyLinx and ConveyNet controllers support only one task, called Main Task and run only

one Program, called Main Program. Main Program represents by two views:

 Tags – double click to open Tags View. Tags View displays all information about tags.

 Main Routine – double click to open Ladder View. Ladder View displays all information
about ladder diagram routine.

1.3.3 Data Types

Data Types are divided by three categories:

 Predefined – ConveyLogix supported data types.

 User-Defined – not supported.

 Module-Defined – controller supported data types.

15 Getting Started

Publication ERSC-1200 Rev 2.2 – July 2016

1.4 Save, Close and Open a Project

To save a project, select File/Save menu or click on icon. If the project is Untitled, Save As

dialog appears to choose your project name.

If you want to store a project with another name, select File/Save As menu.

When the project is saves once, the every next save operation increases Build value.

To close the project, select File/Close menu.

To open a project, select File/Open menu or click on icon and select a file from disk.

16 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

1.5 Configure a Controller

To configure a controller, select Controller/Logic / Controller Properties menu or click on

icon. The next dialog appears.

 IP Address is the IP address of the controller you need to work with.

 Controller Type is a type of the controller – ConveyLinx or ConveyNet.

 Change the controller properties if you need and press OK button for cofirmation.

 If you change the Controller Type from ConveyLinx or ConveyNet or vice versa, you may

lose some Controller Tags properties.

 With changing controller’s IP Address from dialog above, you may download and debug

the same ladder program to different controllers.

Example:

Let you have a network with three controllers with IP addresses 192.169.211.20,

192.169.211.21 and 192.169.211.22, which have to work with same ladder program.

 Change IP Address in dialog above to 192.169.211.20, then download and debug the

ladder program.

 Then change IP Address in dialog above to 192.169.211.21, download and debug the

ladder program.

 And then change IP Address to 192.169.211.22, download and debug the ladder

program.

17 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

2.0 Organize Tags

2.1 Defining Tags
Tag is a named area of the controller’s memory where data is stored. Tags are the basic

mechanism for allocating memory, referencing data from logic, and monitoring data.

The controller uses the tag name internally and doesn’t need to cross-reference a physical

address.

The minimum memory allocation for a tag is a byte.

When you create a tag, you assign the following properties to the tag:

 Scope

 Tag Type

 Data Type

2.1.1 Scope

Tags might divide of two categories by Scope:

 Main Program Tags – user defined tags.

 Controller Tags – controller defined tags. They cannot be changed and depend from
controller type. Controller tags are described in Appendix A – Controller Tags.

2.1.2 Tag Type

There are five types of tags that you can create:

 Base – refers to a normal tag (selected by default). This type of tag allows you to
create your own internal data storage.

 Alias – allows you to assign your own name to an existing tag, structure tag member,
or bit, and refers to a tag which references another tag with the same definition.

 Produce – refers to a tag that is produced by another controller whose data you want
to use in this controller.

 Consumed – refers to a tag that is consumed by another controller.

 Non-volatile – power independent tags.

18 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

2.1.3 Data Type

The data type defines the type of data that a tag stores, such as a bit, integer, etc.

ConveyLogix Programmer supports four types of data:

 Simple – BOOL, SINT, INT and DINT.

Data Type Size Range

BOOL 1 Bit 0 or 1

SINT 1 Byte -128 to +127

INT 2 Bytes -32,768 to +32767

DINT 4 Bytes -2,147,483,648 to +2,147,483,647

 Structure – a data type that is a combination of other data types. Structure is

formatted to create a unique data type that matches a specific need. Within a

structure, each individual data type is called a member. Like tags, members have a

name and data type. ConveyLogix Programmer supports two predefined structures –

TIMER and COUNTER for use with specific instructions such as timers, counters, etc.

and one user-defined – Zone.

 Array – a numerically indexed sequence of elements of the same data type. In

ConveyLogix Programmer, an array index starts at 0 and extends to the number of

elements minus 1. An array can have up to 3 dimensions unless it is a member of a

structure, where it can have only 1 dimension. An array tag occupies a contiguous

block of memory in the controller with each element in sequence.

2.2 Create a Tag
Tags are created or edited in Tags View. Open Tags View by double click to Tags on Project

Bar. To create a tag click into Tag Name area on the last row (marked with sign *):

Type a name of the new tag and then press Enter key or click outside from the rectangle

area.

19 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

The Tag has the next properties:

 Scope – to create a tag is allowed only for Main Program.

 Tag Name – unique alphanumeric name, excluding the symbols “.”, “,”, “[“ and “]”.

 Alias For – used to represent this tag to another (described in point 2.4).

 Base Tag – the original tag name, related to alias. In case that Alias For is not used,
this field is disabled (grayed).

 Data Type – type of the data of the tag.

To change data type click on Data Type cell. The next dialog box appears:

 Choose a type from Data Type list and press OK button.

 If the chosen type is different from BOOL, the tag contains subtags, represent like a

tree. If data type is a simple type the subtags are BOOL types. Count of subtags is

equal of type length in bits.

 If data type is a structure, subtags are fields of the structure. Every field is

represented down to BOOL types.

20 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

 If data type is an array, subtags are the elements of the array. Every field is

represented down to BOOL types.

 For example choose data type as SINT. To see the subtags, click on “+” button (left of

the tag name):

 Init Value – shows the initialize value of the tag, which is the start value when the
controller power-up. Default value is 0.

To change this value, click on Init Value cell. Edit box is shown:

 Type the new value and then confirm by pressing Enter or clicking outside the edit

box area. To cancel typed Init Value changes, press Esc.

 If typed Init Value is not in the range, message box will appear. When you press OK,

edit box will stay to correct or cancel the value.

 The new Init Value will be changed on corresponding subtags (if they exist).

21 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

Likewise, if subtag is changed, change is reflected on corresponding tag.

 Style – the format that numeric values are displayed in.

Style Presentation Example

Binary 2# 2#1101

Octal 8# 8#47

Decimal Signed numeric value -5; 27

Hex 16# 16#FFFFFFFF

IP Address IP Address 192.168.211.21

To change the Tag style, click on Style cell. Combo box with permitted formats will appear.

Open it and select desired style.

22 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Confirm the selected style by pressing Enter or clicking outside the combo box area.

On the next picture are shown tags with simple data types and different styles.

On the next table, Data Type ranges for simple data types are shown for different styles:

Data Type/
Style

BOOL SINT INT DINT

Binary 2#0 to 2#1
2#00000000 to
2#11111111

2#0000000000000000 to
2#1111111111111111

2#0000000000000000
0000000000000000 to
2#1111111111111111
1111111111111111

Octal 8#0 to 8#1 8#0 to 8#377 8#0 to 8#177777 8#0 to 8#377777

Decimal 0 to 1 -128 to 127 -32768 to 32767
-2,147,483,648 to
+2,147,483,647

Hex
16#0 to
16#1

16#00 to
16#FF

16#0000 to 16#FFFF
16#00000000 up to
16#FFFFFFFF

IP Address Not used Not used Not used
0.0.0.0 to
255.255.255.255

Init Value and Style are disabled for complex data types (structures and arrays).

If the Data Type is changed to type with smaller type length, and Init Value exceeds type

range, the value is converted to new type.

Example:

Let Data Type of tag AutoRun is INT and Init Value is 16#FE17. Changing Data Type to

SINT, Init Value will be changed to 16#17.

Correspondence from IP Address to number is explained in the next example.

23 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

Lets have a tag MyIP (as shown on figure above) with Style IP Address and Init Value

192.168.211.21. If Style is changed to Hex, 16#D315C0A8 will displayed. Bytes respond to

the next part of IP Address:

Most significant byte D3 -> 211

… 15 -> 21

… C0 -> 192

Least significant byte A8 -> 168

 Description – user text for better explanation of the tag.

To enter a description, click on Description cell. Edit box will arrear:

Type the description and then confirm by pressing Enter or clicking outside the edit box area.

All subtags inherit typed description. Inherited descriptions show in grey. If you type a

description of subtag, its color will change to black (for example AutoRun.4 subtag).

24 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

2.3 Create an Array
Array is a tag that contains a block of multiple pieces of data. Within an array, each individual

piece of data is called an element. Each element uses the same data type.

An array tag occupies a contiguous block of memory in the controller, each element in

sequence.

The Data may be organized into a block of 1 or 2 dimensions array.

An element within the array starts at 0 and extends to the number of elements minus 1 (zero

based).

To create an array, click on Data Type cell of an existing tag. Select Data Type dialog will

open. Choose Data Type and type the array dimensions.

25 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

Dim. 1 is the number of elements in the first dimension. If Dim.1 is zero, the next dimensions

are disabled (grayed).

Dim. 2 is the number of elements in the second dimension. Choose OK button to confirm

changes.

ConveyLogix and controllers can index arrays.

Example: Single dimension array

In this example, a single timer instruction times the duration of several steps. Each step

requires a different preset value. Because all the values are the same data type (DINTs) an

array is used.

26 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

On MOV instruction Source operand indexes TimerPresets tag by Step. When Step = 0,

TON instruction accumulate time to TimerPresets[0] = 2000 milliseconds. When Step = 1,

TON instruction accumulate time to TimerPresets[1] = 3000 milliseconds and vice versa.

When Step is out of TimerPresets index range (Step < 0 or Step > 3), MOV instruction

doesn’t execute (rung-condition-out is false).

Example: Two dimension array

In this example, a single timer instruction times the duration of Step_1 and Step_2. Each pair

of steps requires a different preset value.

27 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

On MOV instruction Source operand indexes TimerPresets tag by Step1 and Step2.

When Step1 = 0 and Step2 = 0, TON instruction accumulate time to TimerPresets[0,0] =

2000 milliseconds. When Step1 = 0 and Step2 = 1, TON instruction accumulate time to

TimerPresets[0,1] = 3000 milliseconds and vice versa.

When Step1 is out of TimerPresets first index range (Step1 < 0 or Step1 > 3) or Step2 is out

of TimerPresets second index range (Step2 < 0 or Step2 > 1), MOV instruction doesn’t

execute (rung-condition-out is false).

2.4 Assign Alias Tags
An alias tag lets you create one tag that represents another tag. Both tags share the same

value. When the value of one of the tags changes, the other tag reflects the change as well.

Use aliases in the following situations:

 Program logic in advance of wiring diagrams.

 Assign a descriptive name to controller I/O.

 Provide a simpler name for a complex tag.

 Use a descriptive name for an element of an array.

The tags window displays alias information. Aliases may be assigned only for Main Program

tags.

To assign an alias, click on Alias For cell to desired tag. Combo-box will appear. Type tag

name or open the combo-box to choose a tag from existing. For example, change the scope

to Controller, click sign “+” on Inputs tag and select Inputs.4.

28 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Double-click on Inputs.4 and then press Enter or click outside the combo-box.

Alias For shows the name of chosen tag. Base Tag shows the original tag. Data Type and

Init Value are the values of Base Tag (in this example are on Input.4). If you change the Init

Value of SensorCylinderA, you exactly change the Init Value of Input.4.

This example shows how to assign a descriptive name to controller I/O.

If you type an non-existent tag name for Alias For, the sign “X” will show in first column.

29 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

Use the steps above to assign the next tags aliases.

 CylinderA shows how to assign a descriptive name to controller I/O.

 Preset shows how to provide a simpler name for a complex tag.

 FullReadA is a descriptive name for an element of an array.

2.5 Non-Volatile Tag
Non-volatile tags are power independent tags. They use the part of controller’s Flash

memory. After power-up controller cycle, the values of non-volatile tags remain unchanged.

Non-volatile tags are supported only for ConveyLinx controller.

Size of all Non-volatile tags must not exceed 96 bytes.

Only Main Program tags may be non-volatile.

To make an existing tag as non-volatile, right-click on cell at the first column. The next menu

appears:

30 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Choose Non-volatile menu.

 Sign “N” in the first column shows that the tag is non-volatile.

 To make a non-volatile tag as ordinary, right-click on cell at the first column and

select Non-volatile menu.

2.6 Produced and Consumed Tags
Produced and consumed tags are use to transfer data between controllers.

Produced tag sends data to another controller. Consumed tag receives data from another

controller.

ConveyLogix Programmer supports up to four produced/consumed tags.

Information about produced/consumed tags is displayed in Tags View. To show it, change

Scope to Controller.

31 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

 When a produced/consumed tag is not used, the sign “X” is shown at the first column.

 To assign a produced/consumed tag, click on cell at the first column of Tag1. The

next dialog box appears.

 IP Address – IP Address of the controller, which is received/sent the data.

 Type – type of the connection.

 From/To – packet of data, which is received/sent. This field is enabled when Type of
the connection is Produced/Consumed.

 Register number – the first local Modbus register of the packet of data. This field is
disabled and is only for information in all cases, except the last. In the last case
(Register number) this field is enabled. Allowed Modbus register numbers are form 1
up to 299 or greater and equal then 1100.

32 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

2.6.1 Assign a Produced Tag

To assign a produced tag (for example Tag1) fill the above dialog with the next data.

Press OK button. Then click on Data Type cell on Tag1 and select type INT and array

Dimension 1 to 4. Press OK button.

In this example, Tag1 is a block of data with size 8 bytes. Our controller will send these 8

bytes to controller with IP Address 192.168.211.24 into Modbus registers 134 to 137 (8

bytes).

In the next table are shown starting Modbus registers of the controller, which will receive the

data (in this example – 192.168.211.24). Size of the data depends of produced tag data type.

33 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

To Starting Modbus register

Accumulate/Release Up 104

Accumulate/Release Down 184

Infeed 134

Discharge 232

Register Number User defined

Size of the data of produced tag cannot exceed 32 bytes.

2.6.2 Assign a Consumed Tag

To assign a consumed tag (for example Tag2) fill the above dialog with the next data.

Press OK button. Then click on Data Type cell on Tag2 and select type INT.

34 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

In this example, Tag2 is a block of data with size 2 bytes. Our controller will receive these 2

bytes from controller with IP Address 192.168.211.23 from Modbus registers 18 (2 bytes).

In the next table are shown starting Modbus registers of the controller, which will send the

data (in this example – 192.168.211.24). Size of the data depends of produced tag data type.

To Starting Modbus register

Accumulate/Release Up 106

Accumulate/Release Down 186

Upstream Zone 116

Downstream Zone 190

Register Number User defined

Size of the data of produced tag can not exceed 32 bytes.

You may change Tag Name, Data Type, Init Value, Style and Description in the same way as

normal tags.

2.7 Delete a Tag
Click on cell at the first column of tag, which you want to delete. Sing “ ” will appear.

35 Organize Tags

Publication ERSC-1200 Rev 2.2 – July 2016

This sign indicate that this tag is currently selected. To delete a selected tag, press Del key.

Conformation massage will appear.

37 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

3.0 Program Ladder Logic

3.1 Definitions
Before you write or enter ladder logic, review the following terms:

 Instruction

You organize ladder logic as rungs on a ladder and put instructions on each rung. There are

two basic types of instructions:

- Input instruction - An instruction that checks, compares, or examines specific

conditions in your machine or process.

- Output instruction - An instruction that takes some action, such as turn on a device,

turn off a device, copy data, or calculate a value.

 Branch

A branch is two or more instructions in parallel.

There is no limit to the number of parallel branch levels that you can enter. The following

figure shows a parallel branch with four levels. The main rung is the first branch level,

followed by three additional branches.

38 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

You can nest branches to levels. The following figure shows a nested branch. The bottom

output instruction is on a nested branch that is three levels deep.

 Rung Condition

The controller evaluates ladder instructions based on the rung condition preceding the

instruction (rung-condition-in). Based on the rung-condition-in and the instruction, the

controller sets the rung condition following the instruction (rung-condition-out), which in turn,

affects any subsequent instruction.

39 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Only input instructions affect the rung-condition-in of subsequent instructions on the rung:

If the rung-condition-in to an input instruction is true, the controller evaluates the instruction

and sets the rung-condition-out to match the results of the evaluation.

If the instruction evaluates to true, the rung-condition-out is true.

If the instruction evaluates to false, the rung-condition-out is false.

An output instruction does not change the rung-condition-out.

If the rung-condition-in to an output instruction is true, the rung-condition-out is set to true.

If the rung-condition-in to an output instruction is false, the rung-condition-out is set to false.

 Prescan

The controller also prescans instructions. Prescan is a special scan of all routines in the

controller. The controller scans all main routines during prescan, but ignores jumps that could

skip the execution of instructions. The controller uses prescan of relay ladder instructions to

reset non-retentive I/O and internal values.

During prescan, input values are not current and outputs are not written. The following

conditions generate prescan:

- Toggle from Program to Run mode.

- Automatically enter Run mode from a power-up condition.

Prescan does not occur for a program when:

- The program becomes scheduled while the controller is running.

- The program is unscheduled when the controller enters Run mode.

3.2 Write Ladder Logic
To develop your ladder logic, perform the following actions:

 Choose the Required Instructions;

 Arrange the Input Instructions;

 Arrange the Output Instructions;

 Choose a Tag Name for an Operand(s).

Separate the conditions to check from the action to take. Choose the appropriate input

instruction for each condition and the appropriate output instruction for each action.

To choose specific instructions, see Chapter 4.

40 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

The examples in this chapter use two simple instructions to help you learn how to write

ladder logic. The rules that you learn for these instructions apply to all other instructions.

Symbol Name Mnemonic Description

Examine If Closed XIC An input instruction that looks at one bit

of data.

 If the bit is: Then the

instruction

(rung-condition-

out) is:

 on (1) true

 off (0) false

Output Energize OTE An output instruction that controls one

bit of data.

 If the instructions

to the left (rung-

condition-in) are:

Then the

instruction

turns the bit:

 true on (1)

 false off (0)

3.2.1 Arrange the Input Instructions

Arrange the input instructions on a rung using the following table.

To check multiple input conditions when: Arrange the input instructions:

all conditions must be met in order to take action

For example, If condition_1 AND condition_2 AND

condition_3…

In series:

any one of several conditions must be met in order In parallel:

41 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

to take action

For example, If condition_1 OR condition_2 OR

condition_3…

there is a combination of the above

For example, If condition_1 AND condition_2…

OR

If condition_3 AND condition_2…

In combination:

3.2.2 Arrange the Output Instructions

Place at least one output instruction to the right of the input instructions. You can enter

multiple output instructions per rung of logic, as follows:

Option: Example:

sequence on the rung (serial)

branches (parallel)

between input instructions, as long as

the last instruction on the rung is an output

instruction

3.3 Enter Ladder Logic
A new routine contains a rung that is ready for instructions.

42 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

When rung is selected, the cursor is blue. When you add an instruction or branch, it appears

to the right of the cursor.

Use the Instruction Bar to add a ladder logic element to your routine.

3.3.1 Append an Element

There is three ways to append an element:

 using buttons from Instruction Bar;

 drag & drop an existing element;

 copy and paste an existing element.

Example: This example shows how to append elements, using methods above.

Click on XIC button from Instruction Bar.

XIC element is appended and cursor is positioned around it. To add a parallel combination

after selected XIC, click on Branch button.

43 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

To append elements on first branch select on the beginning of the first branch.

Click on XIO button from Instruction Bar.

To append Timer On Delay element, select Timer/Counter tab from Instruction Bar and then

click on TON button. Now parallel combination is on the left part on Ladder View because

contains only input instruction.

The last instruction in parallel combination is output instruction (TON) therefore parallel

combination is placed on the left part on Ladder View.

44 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Now XIC element will copy on the second branch by drag & drop operation. Select XIC

element. Press left mouse button inside the selection, press CTRL key and then drag mouse.

The cursor will change as on picture below.

Grey circles show the possible places to copy the element. Grey circle is the chosen place.

Release left mouse button on the beginning on the second branch.

XIC element will copy on the beginning on the second branch.

If Ctrl key is not pressed, the selected element will move to chosen place.

To append Add element, select Compute/Math tab from Instruction Bar and then click on

ADD button.

45 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Click Branch button to add a parallel combinations after Add element.

Then select on the beginning of any branch (for example of the second branch). Click on

Branch Level button to append a branch. Branch is appended after the branch which element

is selected.

46 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Change Instruction Bar tab again to Bits and click on OTE button.

Now OTE elements will append by Copy/Paste operation. Right click on OTE element. The

next menu will show:

47 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Click on menu Copy. OTE element copies into Clipboard.

Select the beginning of the first branch and right click in selection area.

Click on menu Paste. OTE element copies from Clipboard.

Do the same to append OTE element on the second branch.

48 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

3.3.2 Append a Rung

To append a rung, click on button Rung from Instruction Bar.

In this example rung will append on the end on ladder logic. Rung appends/insert after rung

where the selected element is.

There is a second way to append a rung. Right-click on the rectangle before input power line

of the desired rung and select Add menu.

49 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

The new Rung (1) will append after the selected (0).

3.4 Assign Operands
Every element has one to three operands. Every operand has an operand area.

Most usable bit instructions (like XIC, XIO, OTE, OTU and OTL) have only one operand.

Timers and counters also have one operand.

50 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Mathematical elements (ADD, SUB, MUL and DIV) have three operands.

Unassigned operand is represents by red “?”. To assign an operand double-click on operand

area.

Type the operand name or open the combo-box to select the name from existing tags.

Because in example has no entering tags change the scope to Controller (combo-box at the

bottom), open Inputs tag and select for example Inputs.0. Double-click on it or press Enter.

Tag name will put on the operand edit box. Click outside or press Enter to confirm operand

name.

51 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Inputs.0 is appeared in operand area. Tag’s description is shown bellow the element (if any).

Now we will open Tags View and will created tag for this example usage.

Assign tags to element as a picture below.

52 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Operands for XIC and XIO elements are tags with BOOL type.

TON has only one operand – Duration, which is a TIMER structure. Preset shows the init

value of Duration.PRE element from Duration structure. Accum shows the Duration.ACC init

value.

First operand (Source A) and Third operand (Dest) are tag Phase, which has INT type. For

Second operand (Source B) is typed immediate (constant) value.

Tags for OTE elements in parallel are respectively HoldingFirst, HoldingSecond and

HoldingThird. These tags are aliases and below the elements are shown base tag names.

If tag type is not supported to element operand, “?” symbol shows in init value area.

If operand is a constant, init value area below is hidden. If a constant is not in the type range,

“?” symbol shows in init value area.

When init value for a tag is changed in Tags View, corresponding init values in Ladder View

are refreshed immediately. Likewise, if init value in Ladder View is changed, it reflects to init

value in Tags View.

53 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

3.5 Editing Ladder Logic

3.5.1 Edit a Rung

Right-click in the rectangle before input power line of the desired rung. The next menu

appears.

Use Cut or Copy menu to put the selected rung into Clipboard. When use cut operation, the

selected rung deletes from the ladder logic.

Paste menu is enabled only when rung is put to Clipboard.

Cut, Copy and Paste menus are duplicated in Edit menu.

Select Delete menu to delete a rung.

There is a second way to delete a rung. Select a rung (right-click on the rectangle before

input power line) and press Del key.

3.5.2 Edit an Element

To edit an element, simply right-click on it. The next menu appears.

54 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Use Cut or Copy menu to put the selected element into Clipboard. When use cut operation,

the selected element deletes from the ladder logic.

Paste menu is enabled only when element is put to Clipboard.

Cut, Copy and Paste menus are duplicated in Edit menu.

Select Delete menu to delete a rung.

The second way to delete an element is to select an element and press Del key.

To change an element instruction, select Edit Element menu. Combo-box with all supported

instructions appears.

Select the desired instruction (for example ADD instruction) and click outside the combo-box

or press Enter key. If you want to cancel the changing, press Esc key.

55 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Operands from old instruction are copied to operands to the new instruction. Count of copied

operands is equal of less count of operands of two instructions.

To move an element, click on it and drag over the ladder logic.

The grey circles show the possible places where you can move the dragged element. The

current place is displayed in green circle. Drop the element by releasing the left mouse

button.

There is a way to copy an element by using drag & drop operation. In this way copied

element doesn’t put into Clipboard.

Press Ctrl key and then drag the element. Also, you may press Ctrl key during the drag

operation (on the cursor displayed sign “+”).

56 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Drop the element.

3.5.3 Edit an Operand

Editing an operand is performed by double-clicking on operand area as the same way,

described in point 3.4.

You may cut, copy, paste and delete the text from/to operand edit-box using right-click menu

commands.

The second way to copy an operand is by using drag & drop operation.

Click on operand area and drag over the ladder logic.

57 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

The grey rectangles show the possible places where you can move the dragged operand.

The current place is displayed in green rectangle. Drop the operand by releasing the left

mouse button.

3.6 Enter Rung Comment
To enter/edit rung comment double-click in marked rectangle (picture below) above the rung.

Type the comment text and then press Enter key or click outside.

3.7 Verify the Routine
As you program your routine, periodically you may check your work.

Choose Controller/Logic / Verify Program menu or click on icon. Your program will be

check and the result will display in Output window.

On the picture below is shown program with 3 errors. For example errors are marked and

enumerated in mangenta color.

58 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Double-click on error in Output window to select an element where is the error. In this

example the selected error is related to ADD element.

Every error line contains the next information of the error:

 Rung number;

 Element instruction;

 Number of operand – started at 0;

 Error description.

Here is the explanation of errors in this example:

Error 1 – there are no assigned tag to the XIC instruction operand.

Error 2 – the operand of XIC instruction allow BOOL tag, but type of tag Phase is INT.

Error 3 – it is expected for Source B operand to be entered a immediate (constant) value, but

6t is not a constant.

If the routine reports error, Download Program will break.

59 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

4.0 Function Blocks
Function block (FB) is a programmable organization unit which, when executed, yields one or

more values. ConveyLogix Programmer uses two screens to represent FB definition. FB

Routine contains your program instructions and FB Tags – FB parameters. Function block is

called from Main Program or other FB by defined instance (tag) in the controller’s memory.

4.1 Creating a Function Block
To create a Function block right click on Function blocks in Project Bar tree and select Add

menu. The following dialog box appears:

A FB is characterized with two elements:

• Name – unique name of Function block type;

• Language – program language of Function block instructions.

Press OK button to create the Function block type.

For example:

Create two function blocks named Calculate, used Structured Text and Square – used

Ladder Diagram. They are added to Project Bar tree.

60 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

4.2 Function Block Parameters
To view and edit parameters double-click on created Function block Tags in Project Bar tree.

The block parameters are defined in the interface of the called block. These parameters are

referred to as formal parameters. They are placeholders for the parameters that are

transferred to the block when it is called. The parameters transferred to the block when it is

called are referred to as actual parameters.

The following rules apply to the use of block parameters within the block:

• Input parameters may only be read.

• Output parameters may only be written.

• In/out parameters may be read and written.

61 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Static parameters are accessible only inside of an instance of a function block.

Input, Output and InOut parameters are accessible outside of an instance of a function block.

For example:

Add parameters to FB Calculate as the picture below:

4.3 Function Block Program
Function block program represents a set of instructions, which are executed on function

block instance.

ConveyLogix supports two languages for function block program:

• Ladder Diagram (LD) – enables the programmable controller to test and modify data
by means of graphic symbols. These symbols are laid out in networks in a similar manner to
a “rung” of a relay ladder logic diagram. LD networks are bounded on the left and right by
power rails;

• Structured Text (ST) – a textural programming language, derived from Pascal.

For example:

62 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

4.4 Instances of Function Blocks
A call of a function block is referred to as an instance. An instance of function block is a block

in controller’s memory (tag) which type is a function block name.

For example:

Add an instance of FB Calculate in Main Tags – first define a tag named CalcA and then

change its type to Calculate.

When you assign a FB type to a tag, FB parameters derive initial values of FB definition.

Then if you change a parameter initial value for one instance, it is not changed to other

instances and to FB definition.

4.5 Function Block Calls
When a block is called, you must assign values to the parameters in the block interface. By

providing input parameters you specify the data with which the block is executed. By

providing the output parameters you specify where the execution results are saved.

In your program (Main Routine or FB Routine) you can examine function block output

parameters, but you can not assign a value to output parameter.

Also you can not use invoked function block static parameters.

From LD programs function block is called by JFB instruction with function block instance

(FB Tag).

Example:

Calling function block from Main Program:

63 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

When Run.0 is false, FB is not executed and data in CalcA remain unchanged.

Rung2

When FB call is finished, you may check or assign output parameters. In this example main

tag ResultCalc = CalcA.Sum.

When one block calls another block, the instructions of the called block are executed. Only

when execution of the called block has been completed does execution of the calling block

resume. The execution is continued with the instruction that follows on the block call.

When FB which calls another block is on LD language, calling performs in the same way as it

is called from Main program.

When FB which calls another block is on ST language, calling performs by using called FB

instance. In parentheses are assigned inputs parameters (by := sign) and refers outputs

parameters (by => sign).

Example:

Calling instance SquareA from FB Square type from FB Calculate:

64 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

First create tag and routine of Square FB type.

Then in Calculate FB create a tag, named SquareA with Square data type.

65 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Call SquareA instance from FB Calculate:

When SquareA instance is called (line 1) first ParamA is copied to Param. Then Square

routine executes. After that Result is copied to Result.

There is second way to call SquareA instance – first assign inputs parameters, then call FB

and after that assign outputs parameters.

67 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.0 Ladder Logic Instructions

5.1 Bit Instructions
Use the bit (relay-type) instructions to monitor and control the status of bits.

To enter a bit instructions use buttons form Bit tab of Instruction Bar.

Instruction Description

XIC enable outputs when a bit is set

XIO enable outputs when a bit is cleared

OTE set a bit

OTL set a bit (retentive)

OTU clear bit (retentive)

ONS enable outputs for one scan each time a rung goes true

OSR set a bit for one scan each time a rung goes true

OSF set a bit for one scan each time the rung goes false

68 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.1.1 Examine If Closed (XIC)

The XIC instruction examines the data bit to see if it is set.

Operands:

Operand Type Format Description

data bit BOOL tag bit to be tested

Description:

The XIC instruction examines the data bit to see if it is set.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

69 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Examples:

If LimitSwitch is set, this enables the next

instruction (the rung-condition-out is true).

If Inputs.1 is set (indicates that an overflow has

occurred), this enables the next instruction (the

rung-condition-out is true).

70 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.1.2 Examine If Open (XIO)

The XIO instruction examines the data bit to see if it is cleared.

Operands:

Operand Type Format Description

data bit BOOL tag bit to be tested

Description:

The XIO instruction examines the data bit to see if it is cleared.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

71 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Examples:

If LimitSwitch is cleared, this enables the next

instruction (the rung-condition-out is true).

If Inputs.1 is cleared (indicates that no overflow has

occurred), this enables the next instruction (the

rung-condition-out is true).

72 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.1.3 Output Energize (OTE)

The OTE instruction sets or clears the data bit.

Operands:

Operand Type Format Description

data bit BOOL tag bit to be set or cleared

Description:

When the OTE instruction is enabled, the controller sets the data bit. When the OTE

instruction is disabled, the controller clears the data bit.

Execution:

Condition Action

prescan
The data bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is false
The data bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true
The data bit is set.

The rung-condition-out is set to true.

Example:

When Switch is set, the OTE instruction sets (turns on) Light_1. When Switch is cleared, the

OTE instruction clears (turns off) Light_1.

73 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.1.4 Output Latch (OTL)

The OTL instruction sets (latches) the data bit.

Operands:

Operand Type Format Description

data bit BOOL tag bit to be set

Description:

When enabled, the OTL instruction sets the data bit. The data bit remains set until it is

cleared, typically by an OTU instruction. When disabled, the OTL instruction does not change

the status of the data bit.

Execution:

Condition Action

prescan
The data bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is false
The data bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is true
The data bit is set.

The rung-condition-out is set to true.

Example:

When enabled, the OTL instruction sets Light_2. This bit remains set until it is cleared,

typically by an OTU instruction.

74 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.1.5 Output Unlatch (OTU)

The OTU instruction clears (unlatches) the data bit.

Operands:

Operand Type Format Description

data bit BOOL tag bit to be cleared

Description:

When enabled, the OTU instruction clears the data bit. When disabled, the OTU instruction

does not change the status of the data bit.

Execution:

Condition Action

prescan
The data bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is false
The data bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is true
The data bit is cleared.

The rung-condition-out is set to true.

Example:

When enabled, the OTU instruction clears Light_2.

75 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.1.6 One Shot (ONS)

The ONS instruction enables or disables the remainder of the rung, depending on the status

of the storage bit.

Operands:

Operand Type Format Description

storage bit BOOL tag

internal storage bit

stores the rung-condition-in from the last
time the instruction was executed

Description:

When enabled and the storage bit is cleared, the ONS instruction enables the remainder of

the rung. When disabled or when the storage bit is set, the ONS instruction disables the

remainder of the rung.

Execution:

Condition Action

prescan

The storage bit is set to prevent an invalid trigger
during the first scan.

The rung-condition-out is set to false.

rung-condition-in is false
The storage bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true

76 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

You typically precede the ONS instruction with an input instruction because you scan the

ONS instruction when it is enabled and when it is disabled for it to operate correctly. Once

the ONS instruction is enabled, the rung-condition-in must go clear or the storage bit must be

cleared for the ONS instruction to be enabled again.

On any scan for which LimitSwitch is cleared or Storage is set, this rung has no affect. On

any scan for which LimitSwitch is set and Storage is cleared, the ONS instruction sets

Storage and the ADD instruction increments Sum by 1. As long as LimitSwitch stays set,

Sum stays the same value. The LimitSwitch must go from cleared to set again for Sum to be

incremented again.

77 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.1.7 One Shot Rising (OSR)

The OSR instruction sets or clears the output bit, depending on the status of the storage bit.

Operands:

Operand Type Format Description

storage bit BOOL tag

internal storage bit

stores the rung-condition-in from the last

time the instruction was executed

output bit BOOL tag bit to be set

Description:

When enabled and the storage bit is cleared, the OSR instruction sets the output bit. When

enabled and the storage bit is set or when disabled, the OSR instruction clears the output bit

78 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Execution:

Condition Action

prescan

The storage bit is set to prevent an invalid trigger
during the first scan.

The rung-condition-out is set to false.

rung-condition-in is false

The storage bit is cleared.

The output bit is not modified.

The rung-condition-out is set to false.

rung-condition-in is true

79 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

Each time LimitSwitch goes from cleared to set, the OSR instruction sets OutputBit and the

ADD instruction increments sum by 1. As long as LimitSwitch stays set, Sum stays the same

value. The LimitSwitch must go from cleared to set again for Sum to be incremented again.

You can use OutputBit on multiple rungs to trigger other operations.

80 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.1.8 One Shot Falling (OSF)

The OSF instruction sets or clears the output bit depending on the status of the storage bit.

Operands:

Operand Type Format Description

storage bit BOOL tag

internal storage bit

stores the rung-condition-in from the last

time the instruction was executed

output bit BOOL tag bit to be set

Description:

When disabled and the storage bit is set, the OSF instruction sets the output bit. When

disabled and the storage bit is cleared, or when enabled, the OSF instruction clears the

output bit.

Execution:

Condition Action

prescan

The storage bit is cleared to prevent an invalid trigger
during the first scan.

The output bit is cleared.

The rung-condition-out is set to false.

81 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Condition Action

rung-condition-in is false

rung-condition-in is true

The storage bit is set.

The output bit is cleared.

The rung-condition-out is set to true.

Example:

Each time LimitSwitch goes from set to cleared, the OSF instruction sets OutputBit and the

ADD instruction increments Sum by 1. As long as LimitSwitch stays cleared, Sum stays the

same value. The LimitSwitch must go from set to clear again for Sum to be incremented

again. You can use OutputBit on multiple rungs to trigger other operations.

82 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.2 Timer and Counter Instructions
Timers and counters control operations based on time or the number of events.

To enter a timer/counter instruction use buttons form Timer/Counter tab of Instruction Bar.

Instruction Description

TON time how long a timer is enabled

TOF time how long a timer is disabled

RTO accumulate time

CTU count up

CTD count down

RES reset a timer or counter

The time base for all timers is 1 msec.

83 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.2.1 Timer On Delay (TON)

The TON instruction is a non-retentive timer that accumulates time when the instruction is

enabled (rung-condition-in is true).

Operands:

Operand Type Format Description

Timer TIMER tag TIMER structure

Preset DINT immediate how long to delay (accumulate time)

Accum DINT immediate
total msec the timer has counted

initial value is typically 0

TIMER Structure

Mnemonic Data Type Description

.EN BOOL
The enable bit indicates that the TON
instruction is enabled.

.TT BOOL
The timing bit indicates that a timing operation
is in process

.DN BOOL The done bit is set when .ACC ≥ .PRE.

.PRE DINT

The preset value specifies the value (1 msec
units) which the accumulated value must reach

before the instruction sets the .DN bit.

.ACC DINT

The accumulated value specifies the number of
milliseconds that have elapsed since the

TON instruction was enabled.

84 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Description:

The TON instruction accumulates time until:

 the TON instruction is disabled

 the .ACC ≥ .PRE

The time base is always 1 msec. For example, for a 2-second timer, enter 2000 for the .PRE

value.

When the TON instruction is disabled, the .ACC value is cleared.

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned = current_time. This gets the

timer ready for the next scan.

Execution:

Condition Action

prescan

The .EN, .TT, and .DN bits are cleared.

The .ACC value is cleared.

The rung-condition-out is set to false.

rung-condition-in is false

The .EN, .TT, and .DN bits are cleared.

The .ACC value is cleared.

The rung-condition-out is set to false.

rung-condition-in is true

85 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Condition Action

86 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

When LimitSwitch is set, Light_2 is on for 1800 msec (Timer_1 is timing). When Timer

_1.ACC reaches 1800, Light_2 goes off and Light_3 goes on. Light_3 remains on until the

TON instruction is disabled. If LimitSwitch is cleared while Timer_1 is timing, Light_2 goes

off.

87 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.2.2 Timer Off Delay (TOF)

The TOF instruction is a non-retentive timer that accumulates time when the instruction is

enabled (rung-condition-in is false).

Operands:

Operand Type Format Description

Timer TIMER tag TIMER structure

Preset DINT immediate how long to delay (accumulate time)

Accum DINT immediate
total msec the timer has counted

initial value is typically 0

TIMER Structure

Mnemonic Data Type Description

.EN BOOL
The enable bit indicates that the TOF
instruction is enabled.

.TT BOOL
The timing bit indicates that a timing operation
is in process

.DN BOOL The done bit is cleared when .ACC ≥ .PRE.

.PRE DINT
The preset value specifies the value (1 msec
units) which the accumulated value must reach
before the instruction clears the .DN bit.

.ACC DINT
The accumulated value specifies the number of
milliseconds that have elapsed since the TOF
instruction was enabled.

Description:

The TOF instruction accumulates time until:

 the TOF instruction is disabled

 the .ACC ≥ .PRE

88 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

The time base is always 1 msec. For example, for a 2-second timer, enter 2000 for the .PRE

value.

When the TOF instruction is disabled, the .ACC value is cleared.

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned =

current_time. This gets the timer ready for the next scan.

89 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Execution:

Condition Action

prescan

The .EN, .TT, and .DN bits are cleared.

The .ACC value is set to equal the .PRE value.

The rung-condition-out is set to false.

rung-condition-in is false

rung-condition-in is true

The .EN, .TT, and .DN bits are set.

The .ACC value is cleared.

The rung-condition-out is set to true.

90 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

When LimitSwitch is cleared, Light_2 is on for 1800 msec (Timer_1 is timing). When

Timer_1.ACC reaches 1800, Light_2 goes off and Light_3 goes on. Light_3 remains on until

the TOF instruction is enabled. If LimitSwitch is set while Timer_1 is timing, Light_2 goes off.

91 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.2.3 Retentive Timer On (RTO)

The RTO instruction is a retentive timer that accumulates time when the instruction is

enabled.

Operands:

Operand Type Format Description

Timer TIMER tag TIMER structure

Preset DINT immediate how long to delay (accumulate time)

Accum DINT immediate
total msec the timer has counted
initial value is typically 0

TIMER Structure

Mnemonic Data Type Description

.EN BOOL
The enable bit indicates that the RTO
instruction is enabled.

.TT BOOL
The timing bit indicates that a timing operation
is in process

.DN BOOL The done bit indicates that .ACC ≥ .PRE.

.PRE DINT
The preset value specifies the value (1 msec
units) which the accumulated value must reach
before the instruction sets the .DN bit.

.ACC DINT
The accumulated value specifies the number of
milliseconds that have elapsed since the RTO
instruction was enabled.

Description:

The RTO instruction accumulates time until it is disabled. When the RTO instruction is

disabled, it retains its .ACC value. You must clear the .ACC value, typically with a RES

instruction referencing the same TIMER structure.

92 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

The time base is always 1 msec. For example, for a 2-second timer, enter 2000 for the .PRE

value.

A timer runs by subtracting the time of its last scan from the time now:

ACC = ACC + (current_time - last_time_scanned)

After it updates the ACC, the timer sets last_time_scanned = current_time. This gets the

timer ready for the next scan.

93 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Execution:

Condition Action

prescan

The .EN, .TT, and .DN bits are cleared.

The .ACC value is not modified.

The rung-condition-out is set to false.

rung-condition-in is false

The .EN and .TT bits are cleared.

The .DN bit is not modified.

The .ACC value is not modified.

The rung-condition-out is set to false.

rung-condition-in is true

94 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

When LimitSwitch_1 is set, Light_1 is on for 1800 msec (Timer_1 is timing). When

Timer_1.ACC reaches 1800, Light_1 goes off and Light_2 goes on. Light_2 remains until

Timer_1 is reset. If LimitSwitch_2 is cleared while Timer_1 is timing, Light_1 remains on.

When LimitSwitch_2 is set, the RES instruction resets Timer_1 (clears status bits and .ACC

value).

95 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.2.4 Count Up (CTU)

The CTU instruction counts upward.

Operands:

Operand Type Format Description

Counter COUNTER tag COUNTER structure

Preset DINT immediate how high to count

Accum DINT immediate
number of times the counter has counted

initial value is typically 0

COUNTER Structure

Mnemonic Data Type Description

.CU BOOL
The count up enable bit indicates that the CTU
instruction is enabled.

.DN BOOL The done bit indicates that .ACC ≥ .PRE.

.OV BOOL

The overflow bit indicates that the counter
exceeded the upper limit of 2,147,483,647. The

counter then rolls over to -2,147,483,648 and
begins counting up again.

.UN BOOL

The underflow bit indicates that the counter
exceeded the lower limit of -2,147,483,648. The

counter then rolls over to 2,147,483,647 and
begins counting down again.

.PRE DINT

The preset value specifies the value which the
accumulated value must reach before the

instruction sets the .DN bit.

.ACC DINT
The accumulated value specifies the number of
transitions the instruction has counted.

Description:

96 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

When enabled and the .CU bit is cleared, the CTU instruction increments the counter by one.

When enabled and the .CU bit is set, or when disabled, the CTU instruction retains its .ACC

value.

The accumulated value continues incrementing, even after the .DN bit is set. To clear the

accumulated value, use a RES instruction that references the counter structure or write 0 to

the accumulated value.

97 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Execution:

Condition Action

prescan

The .CU bit is set to prevent invalid

increments during the first program scan.

The rung-condition-out is set to false.

rung-condition-in is false
The .CU bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true

98 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

After LimitSwitch_1 goes from disabled to enabled 10 times, the .DN bit is set and Light_1

turns on. If LimitSwitch_1 continues to go from disabled to enabled, Counter_1 continues to

increment its count and the .DN bit remains set. When LimitSwitch_2 is enabled, the RES

instruction resets Counter_1 (clears the status bits and the .ACC value) and Light_1 turns off.

99 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.2.5 Count Down (CTD)

The CTD instruction counts downward.

Operands:

Operand Type Format Description

Counter COUNTER tag COUNTER structure

Preset DINT immediate how low to count

Accum DINT immediate
number of times the counter has counted

initial value is typically 0

COUNTER Structure

Mnemonic Data Type Description

.CU BOOL
The count down enable bit indicates that the
CTD instruction is enabled.

.DN BOOL The done bit indicates that .ACC ≥ .PRE.

.OV BOOL

The overflow bit indicates that the counter
exceeded the upper limit of 2,147,483,647. The
counter then rolls over to -2,147,483,648 and
begins counting up again.

.UN BOOL

The underflow bit indicates that the counter
exceeded the lower limit of -2,147,483,648. The
counter then rolls over to 2,147,483,647 and
begins counting down again.

.PRE DINT
The preset value specifies the value which the
accumulated value must reach before the
instruction sets the .DN bit.

.ACC DINT
The accumulated value specifies the number of
transitions the instruction has counted.

100 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Description:

The CTD instruction is typically used with a CTU instruction that references the same counter

structure.

When enabled and the .CD bit is cleared, the CTD instruction decrements the counter by

one. When enabled and the .CD bit is set, or when disabled, the CTD instruction retains its

.ACC value.

The accumulated value continues decrementing, even after the .DN bit is set. To clear the

accumulated value, use a RES instruction that references the counter structure or write 0 to

the accumulated value.

101 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Execution:

Condition Action

prescan

The .CD bit is set to prevent invalid

decrements during the first program scan.

The rung-condition-out is set to false.

rung-condition-in is false
The .CD bit is cleared.

The rung-condition-out is set to false.

rung-condition-in is true

102 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

A conveyor brings parts into a buffer zone. Each time a part enters, LimitSwitch_1 is enabled

and Counter_1 increments by 1. Each time a part leaves, LimitSwitch_2 is enabled and

Counter_1 decrements by 1. If there are 100 parts in the buffer zone (Counter_1.DN is set),

Conveyor_A turns on and stops the conveyor from bringing in any more parts until the buffer

has room for more parts.

103 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.2.6 Reset (RES)

The RES instruction resets a TIMER or COUNTER structure.

Operands:

Operand Type Format Description

structure
TIMER

COUNTER
tag structure to reset

Description:

When enabled the RES instruction clears these elements:

When Using a Res

Instruction For a
The Instruction Clears

TIMER
.ACC value

control status bits

COUNTER
.ACC value

control status bits

ATTENTION Because the RES instruction clears the .ACC value, .DN bit and .TT bit, do not

use the RES instruction to reset a TOF timer.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
The RES instruction resets the specified structure.

The rung-condition-out is set to true.

104 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

Example Description

When enabled, reset Timer_1.

When enabled, reset Counter_1.

105 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.3 Compare Instructions
The compare instructions let you compare values by using an expression or a specific

compare instruction.

To enter a timer/counter instruction use buttons form Timer/Counter tab of Instruction Bar.

Instruction Description

LIM test whether one value is between two other values

MEQ
pass two values through a mask and test whether they are
equal

EQU test whether two values are equal

NEQ test whether one value is not equal to a second value

LES test whether one value is less than a second value

GRT test whether one value is greater than a second value

LEQ test whether one value is less than or equal to a second value

GEQ
test whether one value is greater than or equal to a second
value

You can compare values of different data types, such as floating point and integer.

For relay ladder instructions, bold data types indicate optimal data types. An instruction

executes faster and requires less memory if all the operands of the instruction use the same

optimal data type, typically DINT.

106 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.3.1 Limit (LIM)

The LIM instruction tests whether the Test value is within the range of the Low Limit to the

High Limit.

Operands:

Operand Type Format Description

Low limit

SINT

INT

DINT

immediate

tag
value of lower limit

Test

SINT

INT

DINT

immediate

tag
value to test

High limit

SINT

INT

DINT

immediate

tag
value of upper limit

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The LIM instruction tests whether the Test value is within the range of the Low Limit to the

High Limit.

If Low Limit And Test Value Is The Rung-condition-out Is

≤ High Limit
equal to or between limits true

not equal to or outside limits false

≥ High Limit
equal to or outside limits true

not equal to or inside limits false

107 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Signed integers “roll over” from the maximum positive number to the maximum negative

number when the most significant bit is set. For example, in 16-bit integers (INT type), the

maximum positive integer is 32767, which is represented in hexadecimal as 16#7FFF (bits 0

through 14 are all set). If you increment that number by one, the result is 16#8000 (bit 15 is

set). For signed integers, hexadecimal 16#8000 is equal to -32768 decimal. Incrementing

from this point on until all 16 bits are set ends up at 16#FFFF, which is equal to -1 decimal.

This can be shown as a circular number line (see the following diagrams). The LIM

instruction starts at the Low Limit and increments clockwise until it reaches the High Limit.

Any Test value in the clockwise range from the Low Limit to the High Limit sets the rung-

condition-out to true. Any Test value in the clockwise range from the High Limit to the Low

Limit sets the rung-condition-out to false.

Low Limit ≤ High Limit Low Limit ≥ High Limit

The instruction is true if the test value is

equal to or between the low and high limit.

The instruction is true if the test value is equal

to or outside the low and high limit.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

108 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Condition Action

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

Example 1:

Low Limit ≤ High Limit:

When 0 ≤ Value ≥ 100, set Light_1. If Value < 0 or Value >100, clear Light_1.

Example 2:

Low Limit ≥ High Limit:

When Value ≥ 0 or Value ≤ −100, set Light_1. If Value < 0 or Value >−100, clear Light_1.

109 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

110 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.3.2 Mask Equal to (MEQ)

The MEQ instruction passes the Source and Compare values through a Mask and compares

the results.

Operands:

Operand Type Format Description

Source

SINT

INT

DINT

immediate

tag
value to test against Compare

Mask

SINT

INT

DINT

immediate

tag
defines which bits to block or pass

Compare

SINT

INT

DINT

immediate

tag
value to test against Source

If you enter a SINT or INT tag, the value converts to a DINT value by zero-fill.

Description:

A “1” in the mask means the data bit is passed. A “0” in the mask means the data bit is

blocked. Typically, the Source, Mask, and Compare values are all the same data type.

If you mix integer data types, the instruction fills the upper bits of the smaller integer data

types with 0s so that they are the same size as the largest data type.

Entering an Immediate Mask Value:

When you enter a mask, the programming software defaults to decimal values. If you want to

enter a mask using another format, precede the value with the correct prefix.

111 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Prefix Description Example

2# binary 2#00110011

8# octal 8#16

16# hexadecimal 16#0F0F

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

Example 1:

If the masked value_1 is equal to the masked value_2, set light_1. If the masked value_1 is

not equal to the masked value_2, clear light_1. This example shows that the masked values

are equal. A 0 in the mask restrains the instruction from comparing that bit (shown by x in the

example).

112 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example 2:

If the masked value_1 is equal to the masked value_2, set light_1. If the masked value_1 is

not equal to the masked value_2, clear light_1. This example shows that the masked values

are not equal. A 0 in the mask restrains the instruction from comparing that bit (shown by x in

the example).

113 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.3.3 Equal to (EQU)

The EQU instruction tests whether Source A is equal to Source B.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag

value to test against

Source B

Source B

SINT

INT

DINT

immediate

tag

value to test against

Source A

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

Use the EQU instruction to compare two numbers.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

114 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Condition Action

rung-condition-in is true

Example:

If ValueA is equal to ValueB, set Light_1. If ValueA is not equal to ValueB, clear Light_1.

115 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.3.4 Not Equal to (NEQ)

The NEQ instruction tests whether Source A is not equal to Source B.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag

value to test against

Source B

Source B

SINT

INT

DINT

immediate

tag

value to test against

Source A

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The NEQ instruction tests whether Source A is not equal to Source B.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

116 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Condition Action

rung-condition-in is true

Example:

If ValueA is not equal to ValueB, set Light_1. If ValueA is equal to ValueB, clear Light_1.

117 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.3.5 Less Than (LES)

The LES instruction tests whether Source A is less than Source B.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag

value to test against

Source B

Source B

SINT

INT

DINT

immediate

tag

value to test against

Source A

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The LES instruction tests whether Source A is less than Source B.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

118 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Condition Action

rung-condition-in is true

Example:

If ValueA is less than ValueB, set Light_1. If ValueA is greater than or equal to ValueB, clear

Light_1.

119 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.3.6 Greater Than (GRT)

The GRT instruction tests whether Source A is greater than Source B.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag

value to test against

Source B

Source B

SINT

INT

DINT

immediate

tag

value to test against

Source A

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The GRT instruction tests whether Source A is greater than Source B.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

120 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Condition Action

rung-condition-in is true

Example:

If ValueA is greater than ValueB, set Light_1. If ValueA is less than or equal to ValueB, clear

Light_1.

121 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.3.7 Less Than or Equal to (LEQ)

The LEQ instruction tests whether Source A is less than or equal to Source B.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag

value to test against

Source B

Source B

SINT

INT

DINT

immediate

tag

value to test against

Source A

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The LEQ instruction tests whether Source A is less than or equal to Source B.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

122 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Condition Action

rung-condition-in is true

Example:

If ValueA is less than or equal to ValueB, set Light_1. If ValueA is greater than ValueB, clear

Light_1.

123 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.3.8 Greater than or Equal to (GEQ)

The GEQ instruction tests whether Source A is greater than or equal to Source B.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag

value to test against

Source B

Source B

SINT

INT

DINT

immediate

tag

value to test against

Source A

If you enter a SINT or INT tag, the value converts to a DINT value by sign-extension.

Description:

The LEQ instruction tests whether Source A is less than or equal to Source B.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

124 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Condition Action

rung-condition-in is true

Example:

If ValueA is greater than or equal to ValueB, set Light_1. If ValueA is less than ValueB, clear

Light_1.

125 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.4 Compute/Math Instructions

The compute/math instructions evaluate arithmetic operations using an expression or a

specific arithmetic instruction.

To enter a compute/math instruction use buttons form Compute/Math tab of Instruction Bar.

Instruction Description

ADD add two values

SUB subtract two values

MUL multiply two values

DIV divide two values

MOD determine the remainder after one value is divided by another

NEG take the opposite sign of a value

ABS take the absolute value of a value

For relay ladder instructions, bold data types indicate optimal data types. An instruction

executes faster and requires less memory if all the operands of the instruction use the same

optimal data type, typically DINT.

126 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.4.1 Add (ADD)

The ADD instruction adds Source A to Source B and places the result in the Destination.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag
value to add to Source B

 A SINT or INT tag converts to a DINT value by sign-extension.

Source B

SINT

INT

DINT

immediate

tag
value to add to Source A

 A SINT or INT tag converts to a DINT value by sign-extension.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

The ADD instruction adds Source A to Source B and places the result in the Destination.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
Destination = Source A + Source B The

rung-condition-out is set to true.

127 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

If LimitSwitch is set, add ValueA to ValueB and place the result in Result.

128 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.4.2 Subtract (SUB)

The SUB instruction subtracts Source B from Source A and places the result in the

Destination.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag

value from which to subtract
Source B

 A SINT or INT tag converts to a DINT value by sign-extension.

Source B

SINT

INT

DINT

immediate

tag
value to subtract from Source A

 A SINT or INT tag converts to a DINT value by sign-extension.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

The SUB instruction subtracts Source B from Source A and places the result in the

Destination.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
Destination = Source B - Source A

The rung-condition-out is set to true.

129 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

If LimitSwitch is set, subtract ValueB from ValueA and place the result in Result.

130 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.4.3 Multiply (MUL)

The MUL instruction multiplies Source A with Source B and places the result in the

Destination.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag
value of the multiplicand

 A SINT or INT tag converts to a DINT value by sign-extension.

Source B

SINT

INT

DINT

immediate

tag
value of the multiplier

 A SINT or INT tag converts to a DINT value by sign-extension.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

The MUL instruction multiplies Source A with Source B and places the result in the

Destination.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
Destination = Source B x Source A

The rung-condition-out is set to true.

131 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

If LimitSwitch is set, multiply ValueA by ValueB and place the result in Result.

132 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.4.4 Divide (DIV)

The DIV instruction divides Source A by Source B and places the result in the Destination.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag
value of the dividend

 A SINT or INT tag converts to a DINT value by sign-extension.

Source B

SINT

INT

DINT

immediate

tag
value of the divisor

 A SINT or INT tag converts to a DINT value by sign-extension.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

DIV instruction truncates the result.

Operand Type Value

Source A DINT 5

Source B DINT 3

Destination DINT 1

133 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

If Source B (the divisor) is zero, DIV instruction doesn’t evaluate and the next runtime error

occurs:

#103 – Divide by Zero

If ConveyLogix Programmer is in Debug mode, runtime errors are shown in Output window.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
Destination = Source A / Source B

The rung-condition-out is set to true.

Example:

If LimitSwitch is set, divide ValueA by ValueB and place the result in Result.

If ValueB (the divisor) is zero, DIV instruction doesn’t evaluate.

134 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.4.5 Modulo (MOD)

The MOD instruction divides Source A by Source B and places the remainder in the

Destination.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag
value of the dividend

 A SINT or INT tag converts to a DINT value by sign-extension.

Source B

SINT

INT

DINT

immediate

tag
value of the divisor

 A SINT or INT tag converts to a DINT value by sign-extension.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

If Source B (the divisor) is zero, Source A is moved to Destination.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

Destination = Source A – (TRN (Source A / Source B) *
Source B)

The rung-condition-out is set to true.

135 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

If LimitSwitch is set, divide ValueA by ValueB and place the remainder in Result. In this

example, 3 goes into 10 three times, with a remainder of 1.

136 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.4.6 Negate (NEG)

The NEG instruction changes the sign of the Source and places the result in the Destination.

Operands:

Operand Type Format Description

Source

SINT

INT

DINT

immediate

tag
value to negate

 A SINT or INT tag converts to a DINT value by sign-extension.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

If you negate a negative value, the result is positive. If you negate a positive value, the result

is negative.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
Destination = 0 − Source

The rung-condition-out is set to true.

137 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

If LimitSwitch is set, change the sign of ValueA and place the result in Result.

138 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.4.7 Absolute Value (ABS)

The ABS instruction takes the absolute value of the Source and places the result in the

Destination.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag

value of which to take the
absolute value

 A SINT or INT tag converts to a DINT value by sign-extension.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

The ABS instruction takes the absolute value of the Source and places the result in the

Destination.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
Destination = |Source|

The rung-condition-out is set to true.

139 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

If LimitSwitch is set, place the absolute value of ValueA into Result. In this example, the

absolute value of negative four is positive four.

140 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.5 Move/Logical Instructions
To enter a move/logical instruction use buttons form Move/Logical tab of Instruction Bar.

The move instructions modify and move bits.

Instruction Description

MOV copy a value

MVM copy a specific part of an integer

CLR clear a value

The logical instructions perform operations on bits.

Instruction Description

Bitwise AND bitwise AND operation

Bitwise OR bitwise OR operation

Bitwise XOR bitwise, exclusive OR operation

Bitwise NOT bitwise NOT operation

You can mix data types, but loss of accuracy and the instruction takes more time to execute.

Bold data types indicate optimal data types. An instruction executes faster if all the operands

of the instruction use the same optimal data type, typically DINT.

141 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.5.1 Move (MOV)

The MOV instruction copies the Source to the Destination. The Source remains unchanged.

Operands:

Operand Type Format Description

Source

SINT

INT

DINT

immediate

tag
value to move (copy)

 A SINT or INT tag converts to a DINT value by sign-extension.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

The MOV instruction copies the Source to the Destination. The Source remains unchanged.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
The instruction copies the Source into the Destination.

The rung-condition-out is set to true.

142 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

If LimitSwitch is set, move the data in ValueA to Result.

143 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.5.2 Masked Move (MVM)

The MVM instruction copies the Source to a Destination and allows portions of the data to be

masked.

Operands:

Operand Type Format Description

Source

SINT

INT

DINT

immediate

tag
value to move

 A SINT or INT tag converts to a DINT value by zero-fill.

Mask

SINT

INT

DINT

immediate

tag
which bits to block or pass

 A SINT or INT tag converts to a DINT value by zero-fill.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

The MVM instruction uses a Mask to either pass or block Source data bits. A “1” in the mask

means the data bit is passed. A “0” in the mask means the data bit is blocked.

If you mix integer data types, the instruction fills the upper bits of the smaller integer data

types with 0s so that they are the same size as the largest data type.

144 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Entering an Immediate Mask Value:

When you enter a mask; the programming software defaults to decimal values. If you want to

enter a mask using another format, precede the value with the correct prefix.

Prefix Description Example

2# binary 2#00110011

8# octal 8#16

16# hexadecimal 16#0F0F

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

The instruction passes the Source through the Mask and
copies the result into the Destination. Unmasked bits in the
Destination remain unchanged.

The rung-condition-out is set to true.

145 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

If LimitSwitch is set, copy data from ValueA to Result, while allowing data to be masked (a 0

masks the data in ValueA).

The shaded boxes show the bits that changed in Result.

146 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.5.3 Bitwise AND (AND)

The AND instruction performs a bitwise AND operation using the bits in Source A and Source

B and places the result in the Destination.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag
value to AND with Source B

 A SINT or INT tag converts to a DINT value by zero-fill.

Source B

SINT

INT

DINT

immediate

tag
value to AND with Source A

 A SINT or INT tag converts to a DINT value by zero-fill.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

When enabled, the instruction evaluates the AND operation:

If the Bit In

Source A Is

And the Bit In

Source B Is:

The Bit In the

Destination Is:

0 0 0

0 1 0

1 0 0

1 1 1

147 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

If you mix integer data types, the instruction fills the upper bits of the smaller integer data

types with 0s so that they are the same size as the largest data type.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
The instruction performs a bitwise AND operation.

The rung-condition-out is set to true.

Example:

When enabled, the AND instruction performs a bitwise AND operation on ValueA and ValueB

and places the result in the Result.

148 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.5.4 Bitwise OR (OR)

The OR instruction performs a bitwise OR operation using the bits in Source A and Source B

and places the result in the Destination.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag
value to OR with Source B

 A SINT or INT tag converts to a DINT value by zero-fill.

Source B

SINT

INT

DINT

immediate

tag
value to OR with Source A

 A SINT or INT tag converts to a DINT value by zero-fill.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

When enabled, the instruction evaluates the OR operation:

If the Bit In

Source A Is

And the Bit In

Source B Is:

The Bit In the

Destination Is:

0 0 0

0 1 1

1 0 1

1 1 1

149 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

If you mix integer data types, the instruction fills the upper bits of the smaller integer data

types with 0s so that they are the same size as the largest data type.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
The instruction performs a bitwise OR operation.

The rung-condition-out is set to true.

Example:

When enabled, the OR instruction performs a bitwise OR operation on ValueA and ValueB

and places the result in Result.

150 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.5.5 Bitwise Exclusive OR (XOR)

The XOR instruction performs a bitwise XOR operation using the bits in Source A and

Source B and places the result in the Destination.

Operands:

Operand Type Format Description

Source A

SINT

INT

DINT

immediate

tag
value to XOR with Source B

 A SINT or INT tag converts to a DINT value by zero-fill.

Source B

SINT

INT

DINT

immediate

tag
value to XOR with Source A

 A SINT or INT tag converts to a DINT value by zero-fill.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

When enabled, the instruction evaluates the XOR operation:

If the Bit In

Source A Is

And the Bit In

Source B Is:

The Bit In the

Destination Is:

0 0 0

0 1 1

1 0 1

1 1 0

151 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

If you mix integer data types, the instruction fills the upper bits of the smaller integer data

types with 0s so that they are the same size as the largest data type.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
The instruction performs a bitwise OR operation.

The rung-condition-out is set to true.

Example:

When enabled, the XOR instruction performs a bitwise XOR operation on ValueA and

ValueB and places the result in the Result tag.

152 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.5.6 Bitwise NOT (NOT)

The NOT instruction performs a bitwise NOT operation using the bits in the Source and

places the result in the Destination.

Operands:

Operand Type Format Description

Source

SINT

INT

DINT

immediate

tag
value to NOT

 A SINT or INT tag converts to a DINT value by sign-extension.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

When enabled, the instruction evaluates the NOT operation:

If the Bit In Source Is: The Bit In theDestination Is:

0 1

1 0

If you mix integer data types, the instruction fills the upper bits of the smaller integer data

types with 0s so that they are the same size as the largest data type.

153 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
The instruction performs a bitwise NOT operation.

The rung-condition-out is set to true.

Example:

When enabled, the NOT instruction performs a bitwise NOT operation on ValueA and places

the result in Result tag.

154 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.5.7 Clear (CLR)

The CLR instruction clears all the bits of the Destination.

Operands:

Operand Type Format Description

Destination

SINT

INT

DINT

tag tag to clear

Description:

The CLR instruction clears all the bits of the Destination.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true
The instruction clears the Destination.

The rung-condition-out is set to true.

Example:

Let Value is equal to 9999. When enabled, clear all the bits of Value to 0.

155 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.6 Module Specific Instructions
The module specific instructions perform controller-specific operations.

To enter a module specific instruction use buttons form Module Specific tab of Instruction

Bar.

Instruction Description

RDR read local Modbus register

WRR write local Modbus register

WRC write local Modbus register and send via communication

DOL count pulses of the left motor when enabled

DOR count pulses of the right motor when enabled

DOL and DOR instructions are available only for ConveyLinx controller type.

156 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.6.1 Read Register (RDR)

The RDR instruction copies the value of local Modbus register, referred to Reg No, to the

Destination.

Operands:

Operand Type Format Description

Reg No Modbus Register immediate
Modbus register number. Must be
from 1 to 512.

Destination

SINT

INT

DINT

tag tag to store the result

Description:

The RDR instruction copies the value of local Modbus register, referred to Reg No, to the

Destination. The Modbus register value remains unchanged.

Destination Type Action

SINT Low BYTE of the Modbus register is copied to the Destination.

INT The Modbus register is copied to the Destination.

DINT
Two consecutive Modbus registers are copied to the Destination.
The first register is copied to Low WORD and the second – to
High WORD of the Destination.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

The instruction copies the value, referred to Reg No, into
the Destination.

The rung-condition-out is set to true.

157 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example 1:

Type of Value is SINT. Let the value of local Modbus register 110 is 300 (16#012C).

When enabled, read register 110 and put low BYTE (16#2C) of the value to Value tag. The

high BYTE is truncated.

Example 2:

Type of Value is INT. Again let the value of local Modbus register 110 is 300 (16#012C).

When enabled, read register 110 and put the value to Value tag.

Example 3:

Type of Value is DINT. Let the value of local Modbus register 110 is 300 (16#012C) and

value of local Modbus register 111 is 0 (16#0000).

When enabled, read registers 110 and 111 and put the value of register 110 to low WORD

(16#012C) of Value tag and the value of registers 111 to high WORD (16#0000) of Value

tag.

158 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.6.2 Write Register (WRR)

The WRR instruction copies the value of Source to local Modbus register, referred to Reg

No.

Operands:

Operand Type Format Description

Source
SINT
INT
DINT

tag value to write

Reg No Modbus Register immediate
Modbus register number. Must be
from 1 to 512.

Description:

The WRR instruction copies the value of Source to local Modbus register, referred to Reg

No. The Source value remains unchanged.

Source Type Action

SINT
The Source is copied to the Low BYTE of the Modbus register.
The High BYTE of the Modbus register remains unchanged.

INT The Source is copied to the Modbus register.

DINT
The Source is copied to two consecutive Modbus registers. The
Low WORD of Source is copied to the first Modbus register and
the High WORD – to the second Modbus registers.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

The instruction copies the value of Source to Modbus
register, referred to Reg No.

The rung-condition-out is set to true.

159 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example 1:

Let type of Value is SINT and Value is equal to 45 (16#2D).

When enabled, copies the value of Value tag to the Low BYTE of the Modbus register 110.

The High BYTE of the Modbus register 110 remains unchanged.

Example 2:

Let type of Value is INT and Value is equal to 300 (16#012C).

When enabled, copies the value of Value tag to Modbus register 110.

Example 3:

Let type of Value is DINT and Value is equal to 300 (16#0000012C).

When enabled, copies the low WORD of Value tag (16#012C) to Modbus register 110 and

the high WORD of Value tag (16#0000) to Modbus register 111.

160 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.6.3 Write Register Comm (WRC)

The WRC instruction copies the value of Source to local Modbus register, referred to Reg No

and send via communication.

Operands:

Operand Type Format Description

Source

SINT

INT

DINT

tag value to write

Reg No Modbus Register immediate
Modbus register number. Must be
from 1 to 512.

Description:

The WRC instruction copies the value of Source to local Modbus register, referred to Reg No

and send via communication. The Source value remains unchanged.

ConveyLinx and ConveyNet controllers are organized by events. When using

the WRC instruction; it may cause interrupts to awaken idle tasks. Frequent

use of the WRC instruction in certain cases may affect processor loading and

performance such that communications and/or motor commutation tasks may

delay or cause unexpected results.

Source Type Action

SINT
The Source is copied to the Low BYTE of the Modbus register.
The High BYTE of the Modbus register remains unchanged.

INT The Source is copied to the Modbus register.

DINT
The Source is copied to two consecutive Modbus registers. The
Low WORD of Source is copied to the first Modbus register and
the High WORD – to the second Modbus registers.

161 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

The instruction copies the value of Source to Modbus
register, referred to Reg No.

The rung-condition-out is set to true.

Example:

When enabled, copies the value of Value tag to local Modbus register 110. If register 110

participates to any of the controller events, sends update to the other controller(s).

162 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.6.4 Distance On Left (DOL)

The DOL instruction counts evaluated pulses of the left motor when the instruction is

enabled.

Operands:

Operand Type Format Description

Timer TIMER tag TIMER structure

Preset DINT immediate how high to count

Accum DINT immediate
evaluated pulses of the left motor

initial value is typically 0

TIMER Structure

Mnemonic Data Type Description

.EN BOOL
The enable bit indicates that the DOL
instruction is enabled.

.TT BOOL
The timing bit indicates that a counting
operation is in process

.DN BOOL The done bit is set when .ACC ≥ .PRE.

.PRE DINT
The preset value specifies the value which the
accumulated value must reach before the
instruction sets the .DN bit.

.ACC DINT
The accumulated value specifies the number of
pulses, evaluated from the left motor, the
instruction has counted.

Description:

When enabled, the DOL instruction counts the pulses, evaluated of left motor.

The DOL instruction accumulates pulses until:

 the DOL instruction is disabled

 the .ACC ≥ .PRE

163 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

When the DOL instruction is disabled, the .ACC value is cleared.

DOL instruction is available only for ConveyLinx controller type.

Execution:

Condition Action

prescan

The .EN, .TT, and .DN bits are cleared.
The .ACC value is cleared.
The rung-condition-out is set to false.

rung-condition-in is false

The .EN, .TT, and .DN bits are cleared.
The .ACC value is cleared.
The rung-condition-out is set to false.

rung-condition-in is true

164 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

When LimitSwitch is set, Light_1 is on for 2000 pulses. When Pulses.ACC reaches 2000,

Light_1 goes off and Light_2 goes on. Light_2 remains on until the DOL instruction is

disabled. If LimitSwitch is cleared while DOL is counting, Light_1 goes off.

165 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.6.5 Distance On Right (DOR)

The DOR instruction counts evaluated pulses of the right motor when the instruction is

enabled.

Operands:

Operand Type Format Description

Timer TIMER tag TIMER structure

Preset DINT immediate how high to count

Accum DINT immediate
evaluated pulses of the right motor initial
value is typically 0

TIMER Structure

Mnemonic Data Type Description

.EN BOOL
The enable bit indicates that the DOR
instruction is enabled.

.TT BOOL
The timing bit indicates that a counting
operation is in process

.DN BOOL The done bit is set when .ACC ≥ .PRE.

.PRE DINT
The preset value specifies the value which the
accumulated value must reach before the
instruction sets the .DN bit.

.ACC DINT
The accumulated value specifies the number of
pulses, evaluated from the right motor, the
instruction has counted.

Description:

When enabled, the DOR instruction counts the pulses, evaluated of right motor.

The DOR instruction accumulates pulses until:

 the DOR instruction is disabled

 the .ACC ≥ .PRE

166 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

When the DOR instruction is disabled, the .ACC value is cleared.

DOL instruction is available only for ConveyLinx controller type.

Execution:

Condition Action

prescan
The .EN, .TT, and .DN bits are cleared.
The .ACC value is cleared.
The rung-condition-out is set to false.

rung-condition-in is false
The .EN, .TT, and .DN bits are cleared.
The .ACC value is cleared.
The rung-condition-out is set to false.

rung-condition-in is true

167 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

When LimitSwitch is set, Light_1 is on for 2000 pulses. When Pulses.ACC reaches 2000,

Light_1 goes off and Light_2 goes on. Light_2 remains on until the DOR instruction is

disabled. If LimitSwitch is cleared while DOR is counting, Light_1 goes off.

168 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.7 Program Control Instructions
Use the program control instructions to change the flow of logic.

To enter a program control instruction use buttons form Program Control tab of Instruction

Bar.

Instruction Description

JMP skip portions of ladder logic

LBL the target of the JMP instruction

169 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.7.1 Jump (JMP)

The JMP instruction skips portions of ladder logic.

Operands:

Operand Type Format Description

label name LABEL LABEL name name for associated LBL

instruction

Description:

When enabled, the JMP instruction skips to the referenced LBL instruction and the controller

continues executing from there. When disabled, the JMP instruction does not affect ladder

execution.

The JMP instruction can move ladder execution only forward.

Jumping to a label saves program scan time by omitting a logic segment until it’s needed.

JMP conditions are scanned and it is not allowed to jump forward ladder logic. If it occurs,

controller doesn’t run and the next error reports:

#11 – Wrong Jump

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true

Ladder logic execution jumps to the rung that contains
the LBL instruction with the referenced label name.

The rung-condition-out is set to true.

170 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

When the JMP instruction is enabled, execution jumps over successive rungs of logic until it

reaches the rung that started with LBL instruction with name Label_1.

When the JMP instruction is executed, instructions between JMP and LBL instructions are

not executed (in this example - instructions of Rung 1 and Rung 2).

In this example TON instruction will not be executed.

171 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.7.2 Label (LBL)

The LBL instruction is the target of the JMP instruction that has the same label name.

Operands:

Operand Type Format Description

label name LABEL LABEL name name for LBL instruction

Description:

The LBL instruction marks the rung where the logic will continue after execution of JMP

instruction with the same name.

Make sure the LBL instruction is the first instruction on its rung.

A label name must be unique within a routine. The name can contain letters, numbers, and

underscores (_).

Execution:

The LBL instruction is a blank instruction. It is not executed.

Example:

When the JMP instruction is enabled, “Other rungs of code” are jumped, and logic continues

the rung that started with LBL instruction with name Label_1.

172 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

5.7.3 Jump to Function Block (JFB)

The JFB instruction calls function block.

Operands:

Operand Type Format Description

FB Tag FB type tag name of function block instance

Description:

When enabled, the JFB instruction executes function block routine.

The JFB instruction is complete when all function block routine instructions are

executed.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Executes all function block routine instruction.

The rung-condition-out is set to true.

Example:

When Run.0 is set, routine of function block Calculate is executed, using CalcA instance

data.

173 Program Ladder Logic

Publication ERSC-1200 Rev 2.2 – July 2016

5.7.4 Return from Function Block (RFB)

The RFB instruction breaks the execution of current function block routine.

Operands:

The RFB instruction has no operands.

Description:

When enabled, the RFB instruction breaks the execution of current function block routine.

All instructions after RFB are not executed.

Execution:

Condition Action

prescan The rung-condition-out is set to false.

rung-condition-in is false The rung-condition-out is set to false.

rung-condition-in is true Breaks the execution of current function block routine.

The rung-condition-out is set to true.

Example:

When Flag is set, all instructions after RFB are not executed (instruction MUL is not
executed).

175 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

6.0 Program Structured Text
Structured text is a textual programming language that uses statements to define what to

execute.

 Structured text is case sensitive.

 Use tabs and carriage returns (separate lines) to make your structured text easier to
read. They have no effect on the execution of the structured text.

Structured text can contain these components:

Term Definition Examples

Assignment

Use an assignment statement to assign values to
tags.
The “:=” operator is the assignment operator.
Terminate the assignment with a semi colon “;”.

value2 := value1;

Expression

An expression is a part of a complete assignment
or construct statement.

An expression evaluates to a numerical expression
(number) or to a BOOL expression (true or false).
An expression contains:

Tag
A named area of the memory where
data is stored (BOOL, SINT, INT,
DINT).

value1

Immediate A constant value. 4

Operator A symbol or mnemonic that specifies
an operation within an expression.

value1 + value2
value2 >= value1

Function

When executed, a function yields
one value. Use parentheses to
contain the operand of a function.

Functions can be used in
expressions.

function(value1)

Function

Block

A function block call is a standalone statement and
cannot be used in expressions.

A function block call uses parenthesis to contain its
input or/and output parameters.

Depending on the function block type and call,
there can be zero, one, or multiple parameters.

When executed, a function block yields one or
more values that are part of a data structure.

Terminate the instruction with a semi colon “;”.

FB_instance();

FB_instance(In1 :=
value1);

FB_instance(In1 :=
value1, In2 := value2,
Out => value3);

176 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Term Definition Examples

Construct
A conditional statement used to trigger structured
text code (other statements).

Terminate the construct with a semi colon “;”.

IF...THEN

CASE

FOR...DO

EXIT

CONTINUE

RETURN

Comment

Text that explains or clarifies what a section of
structured text does.

Use comments to make it easier to interpret the
structured text.

Comments do not affect the execution of the
structured text.

Comments can appear anywhere in structured text.

//comment

(*start of comment . . .
end of comment*)

/*start of comment . . .
end of comment*/

6.1 Assignment
Use an assignment to change the value stored within a tag. An assignment has this syntax:

tag := expression;

Component Description

tag
Represents the tag that is getting the new value.

The tag must be a BOOL, SINT, INT, or DINT.

:= Is the assignment symbol.

expression

Represents the new value to assign to the tag.

If tag is this data type Use this type of expression

BOOL BOOL expression

SINT

Numeric expression INT

DINT

; Ends the assignment.

The tag retains the assigned value until another assignment changes the value.

The expression can be simple, such as an immediate value or another tag name, or the

expression can be complex and include several operators and/or functions.

177 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

6.2 Expression
An expression is a tag name, equation, or comparison. To write an expression, use any of

these elements:

 Tag name that stores the value (variable).

 Number that you enter directly into the expression (immediate value).

 Functions, such as: MOD.

 Operators, such as: +, -, <, >, AND, OR.

For more complex requirements, use parentheses to group expressions within expressions.

This makes the whole expression easier to read and ensures that the expression executes in

the desired sequence.

You may add user comments inline. Therefore, local language switching does

not apply to your programming language.

In structured text, you use two types of expressions:

 BOOL expression – an expression that produces either the BOOL value of TRUE (1)
or FALSE (0).

A BOOL expression uses BOOL tags, relational operators, and logical operators to compare

values or check if conditions are true or false.

For example, tag1 > 65

A simple BOOL expression can be a single BOOL tag.

Typically, you use BOOL expressions to condition the execution of other logic.

 Numeric expression – an expression that calculates an integer value.

A numeric expression uses arithmetic operators, arithmetic functions, and bitwise operators.

For example, tag1 + 5

Often, you nest a numeric expression within a BOOL expression.

For example, (tag1 + 5) > 65

Use the following table to choose operators for your expressions:

If you want to Then

Calculate an arithmetic value Use Arithmetic Operators and Functions

Compare two values Use Relational Operators

Check if conditions are true or false Use Logical Operators

Compare the bits within values Use Bitwise Logical Operators

Read/write Modbus Register Use Modbus Register Operators

178 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

6.2.1 Arithmetic Operators and Functions

Arithmetic operators calculate new values. You can combine multiple operators and

functions in arithmetic expressions.

To Use this operator Optimal data type

Add + DINT

Subtract - DINT

Multiply * DINT

Divide / DINT

Absolute value ABS DINT

Negate NEG DINT

Arithmetic functions perform math operations. Specify a constant, a non-boolean tag, or an

numeric expression for the function.

For Use this operator Optimal data type

Modulo-divide MOD(num_exp1, num_exp2) DINT

Absolute value ABS(num_exp) DINT

For example:

Use this format Example

 For this situation You’d write

value1 operator value2 If gain and gain_adj are DINT tags
and your specification says: "Add 15
to gain and store the result in
gain_adj."

gain_adj := gain + 15;

operator value1 If alarm and high_alarm are DINT
tags and your specification says:
“Negate high_alarm and store the
result in alarm.”

alarm:= -high_alarm;

function(numeric_expression) If overtravel and overtravel_POS are
DINT tags and your specification
says: “Calculate the absolute value
of overtravel and store the result in
overtravel_POS.”

overtravel_POS :=
ABS(overtravel);

value1 operator
(function((value2+value3)/2)

If adjustment and position are DINT
tags and sensor1 and sensor2 are
REAL tags and your specification
says: “Find the absolute value of the
average of sensor1 and sensor2,

position := adjustment
+ ABS((sensor1 +
sensor2)/2);

179 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

Use this format Example

add the adjustment, and store the
result in position.”

180 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

6.2.2 Relational Operators

Relational operators compare two values or strings to provide a true or false result. The

result of a relational operation is a BOOL value.

If the comparison is The result is

true
1

false 0

Use these relational operators.

For this comparison: Use this operator: Optimal Data Type:

Equal = DINT

Less than < DINT

Less than or equal <= DINT

Greater than > DINT

Greater than or equal >= DINT

Not equal <> DINT

For example:

Use this format Example

 For this situation You’d write

value1 operator value2 If temp is a DINT tag and your
specification says: “If temp is less

than 100⋅then …”

IF temp < 100 THEN

...

bool_tag := bool_expression If count and length are DINT tags,
done is a BOOL tag, and your
specification says ”If count is greater
than or equal to length, you are
done counting.”

done := (count >=
length);

181 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

6.2.3 Logical Operators

Logical operators let you check if multiple conditions are true or false. The result of a logical

operation is a BOOL value:

If the comparison is The result is

true
1

false 0

Use these logical operators:

For Use this operator Data Type

Logical AND &, AND BOOL

Logical OR OR BOOL

Logical exclusive OR XOR BOOL

Logical complement NOT BOOL

For example:

Use this format Example

 For this situation You’d write

BOOLtag If photoeye is a BOOL tag and your
specification says: “If photoeye_1 is on then…”

IF photoeye THEN...

NOT BOOLtag If photoeye is a BOOL tag and your
specification says: “If photoeye is off then…”

IF NOT photoeye
THEN...

expression1 &
expression2

If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on

and temp is less than 100⋅then…”.

IF photoeye & (temp
< 100) THEN...

expression1 OR
expression2

If photoeye is a BOOL tag, temp is a DINT tag,
and your specification says: “If photoeye is on

or temp is less than 100⋅then…”.

IF photoeye OR
(temp < 100) THEN...

expression1 XOR
expression2

If photoeye1 and photoeye2 are BOOL tags
and your specification says: “If:

 photoeye1 is on while photoeye2 is off
or

 photoeye1 is off while photoeye2 is on

IF photoeye1 XOR
photoeye2 THEN...

182 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Use this format Example

then…"

BOOLtag :=
expression1 &
expression2

If photoeye1 and photoeye2 are BOOL tags,
open is a BOOL tag, and your specification
says: “If photoeye1 and photoeye2 are both
on, set open to true”.

open := photoeye1 &
photoeye2;

183 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

6.2.4 Bitwise Operators

Bitwise operators manipulate the bits within a value based on two values.

Operator Use this operator Optimal Data Type

Bitwise AND &, AND DINT

Bitwise OR OR DINT

Bitwise exclusive OR XOR DINT

Bitwise complement NOT DINT

Bitwise clear CLR DINT

Shift left << DINT

Shift right >> DINT

For example:

Use this format Example

 For this situation You’d write

value1 operator value2 If input1, input2, and result1 are DINT
tags and your specification says:
“Calculate the bitwise result of input1 and
input2. Store the result in result1.”

result1 := input1 AND
input2;

value1 << 2 If input1 and result1 are DINT tags and
your specification says: “Shift left input1
two times and store the result in result1.”

result1 := input1 << 2;

184 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

6.2.5 Modbus Register Operators

Modbus register operators allow read from or write to the controller’s Modbus registers.

%Rreg_number

Operands:

Operand Type Format Description

reg_number Modbus
Register

immediate Modbus register number. Must be
from 1 to 512.

Description:

To read a Modbus register use the next syntax:

tag := %Rreg_number;

The value of Modbus register is 2 byte. If tag type is SINT, only Low BYTE of the Modbus

register is copied to tag.

To write into Modbus register use the next syntax:

%Rreg_number := tag;

The value of Modbus register is 2 byte.

If tag type is DINT, only the Low WORD of tag value is copied to Modbus register.

For example:

Use this format Example

 For this situation You’d write

tag := %Rreg_number The value of Modbus register 110
will be put to Value.

Value := %R110;

%Rreg_number := tag The value of Value will be put to
Modbus register 110.

%R110 := Value;

tag := %Rreg_number1 +
%Rreg_number2

The sum of Modbus registers 110
and 112 values will be put to Value.

Value := %R110 +
%R112;

6.2.6 Order of Execution

The operations you write into an expression are performed in a prescribed order, not
necessarily from left to right.

 Operations of equal order are performed from left to right.

185 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

 If an expression contains multiple operators or functions, group the conditions in

parenthesis “()”. This ensures the correct order of execution and makes it easier to

read the expression.

Order Operation

1
()

2 function(…)

3 %R

4 NOT, NEG, ABS, CLR

5 *, /, MOD

6 +, -

7 <<, >>

8 <, <=, >, >=

9 =, <>

10 &, AND

11 XOR

12 OR

186 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

6.3 Constructs
Constructs can be programmed singly or nested within other constructs.

If you want to Use this construct

Do something if or when specific conditions occur
IF...THEN

Select what to do based on a numerical value CASE...OF

Do something a specific number of times before doing anything else FOR...DO

Continue the loop CONTINUE

Exit the loop EXIT

Exit the function block RETURN

187 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

6.3.1 IF...THEN

Use IF…THEN construct to do something if or when specific conditions occur.

IF bool_expression THEN

<statement>;

END_IF;

Operands:

Operand Type Format Description

bool_expression BOOL tag

expression

BOOL tag or expression that
evaluates to a BOOL value
(BOOL expression)

Syntax:

IF bool_expression1 THEN

<statement>; //Statements to execute when bool_expression1 is true

...

//Optional

ELSIF bool_expression2 THEN

<statement>; //Statements to execute when bool_expression2 is true

...

//Optional

ELSE

<statement>; //Statements to execute when both expressions are false

...

END_IF;

To use ELSIF or ELSE, follow these guidelines:

 To select from several possible groups of statements, add one or more ELSIF
statements.

- Each ELSIF represents an alternative path.
- Specify as many ELSIF paths as you need.
- The controller executes the first true IF or ELSIF and skips the rest of the

ELSIFs and the ELSE.

188 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

 To do something when all of the IF or ELSIF conditions are false, add an ELSE
statement.

This table summarizes combinations of IF, THEN, ELSIF, and ELSE.

If you want to And Then use this construct

Do something if or when
conditions are true

Do nothing if conditions are
false

IF…THEN

Do something else if conditions
are false

IF…THEN…ESLE

Choose from alternative
statements (or groups of
statements) based on input
conditions

Do nothing if conditions are
false

IF…THEN…ELSIF

Assign default statements if all
conditions are false

IF…THEN…ELSIF…ELSE

Example 1:

IF…THEN

If you want this Enter this structured text

If rejects > 3 then

 conveyor = off (0)

 alarm = on (1)

IF rejects > 3 THEN

 conveyor := 0;

 alarm := 1;

END_IF;

Example 2:

IF…THEN…ELSE

If you want this Enter this structured text

If conveyor direction contact = forward (1) then

 light = off

Otherwise light = on

IF conveyor_direction THEN

 light := 0;

ELSE

 light := 1;

END_IF;

Example 3:

IF…THEN…ELSIF

189 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

If you want this Enter this structured text

If sugar low limit switch = low (on) and sugar
high limit switch = not high (on) then

 inlet valve = open (on)

Until sugar high limit switch = high (off)

IF Sugar.Low & Sugar.High THEN

 Sugar.Inlet := 1;

ELSIF NOT(Sugar.High) THEN

 Sugar.Inlet := 0;

END_IF;

Example 4:

IF…THEN…ELSIF…ELSE

If you want this Enter this structured text

If tank temperature > 100

 then pump = slow

If tank temperature > 200

 then pump = fast

otherwise pump = off

IF tank.temp > 200 THEN

 pump.fast :=1; pump.slow :=0; pump.off :=0;

ELSIF tank.temp > 100 THEN

 pump.fast :=0; pump.slow :=1; pump.off :=0;

ELSE

 pump.fast :=0; pump.slow :=0; pump.off :=1;

END_IF;

190 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

6.3.2 CASE...OF

Use CASE…OF construct to select what to do based on a numerical value.

CASE numeric_expression OF

selector1: <statement>;

selectorN: <statement>;

ELSE

<statement>;

END_CASE;

Operands:

Operand Type Format Description

numeric_expression SINT

INT

DINT

tag

expression

tag or expression that evaluates to
a number (numeric expression)

selector SINT

INT

DINT

immediate
same type as numeric_expression

Syntax:

CASE numeric_expression OF

//specify as many alternative selector values (paths) as you need

selector1:

 <statement>; //statements to execute when numeric_expression = selector1

 …

selector2:

 <statement>; //statements to execute when numeric_expression = selector2

 …

selector3 :

 <statement>; //statements to execute when numeric_expression = selector3

 ...

optional

191 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

ELSE //statements to execute when numeric_expression ≠ any selector

 <statement>;

...

END_CASE;

The syntax for entering the selector values is:

When selector is: Enter:

one value value: statement

multiple, distinct values value1, value2, valueN : <statement>

Use a comma (,) to separate each value.

a range of values value1..valueN : <statement>

Use two periods (..) to identify the range.

distinct values plus a range of values valuea, valueb, value1..valueN : <statement>

The CASE construct is similar to a switch statement in the C or C++ programming

languages. However, with the CASE construct the controller executes only the statements

that are associated with the first matching selector value. Execution always breaks after the

statements of that selector and goes to the END_CASE statement.

Example:

If you want this Enter this structured text

If recipe number = 1 then

 Ingredient A outlet 1 = open (1)

 Ingredient B outlet 4 = open (1)

If recipe number = 2 or 3 then

 Ingredient A outlet 4 = open (1)

 Ingredient B outlet 2 = open (1)

If recipe number = 4, 5, 6, or 7 then

 Ingredient A outlet 4 = open (1)

 Ingredient B outlet 2 = open (1)

If recipe number = 8, 11, 12, or 13 then

 Ingredient A outlet 1 = open (1)

CASE recipe_number OF

1: Ingredient_A.Outlet_1 :=1;

 Ingredient_B.Outlet_4 :=1;

2,3: Ingredient_A.Outlet_4 :=1;

 Ingredient_B.Outlet_2 :=1;

4..7: Ingredient_A.Outlet_4 :=1;

 Ingredient_B.Outlet_2 :=1;

8,11..13: Ingredient_A.Outlet_1 :=1;

 Ingredient_B.Outlet_4 :=1;

ELSE

 Ingredient_A.Outlet_1 :=0;

192 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

 Ingredient B outlet 4 = open (1)

Otherwise all outlets = closed (0)

 Ingredient_A.Outlet_4 :=0;

 Ingredient_B.Outlet_2 :=0;

 Ingredient_B.Outlet_4 :=0;

END_CASE;

193 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

6.3.3 FOR…DO

Use the FOR…DO loop to do something a specific number of times before doing anything

else.

FOR count:= initial_value TO final_value BY increment DO

 <statement>;

END_FOR;

Operands:

Operand Type Format Description

count SINT

INT

DINT

tag tag to store count position as the
FOR…DO executes

initial_value SINT

INT

DINT

tag

expression

immediate

must evaluate to a number
specifies initial value for count

final_value SINT

INT

DINT

tag

expression

immediate

specifies final value for count,
which determines when to exit
the loop

increment SINT

INT

DINT

tag

expression

immediate

(optional) amount to increment
count each time through the loop

If you don’t specify an increment,
the count increments by 1.

Syntax:

FOR count := initial_value

 TO final_value

 //optional

 BY increment //If you don’t specify an increment, the loop increments by 1.

DO

 <statement>;

 //optional

 IF bool_expression1 THEN

194 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

 EXIT; //If there are conditions when you want to exit the loop early, use other

statements, such as an IF...THEN construct, to condition an EXIT statement.

 END_IF;

 //optional

 IF bool_expression2 THEN

 CONTINUE; //If there are conditions when you want to continue the loop, use

other statements, such as an IF...THEN construct, to condition a CONTINUE statement.

 END_IF;

END_FOR;

Make sure that you do not iterate within the loop too many times in a single
scan.

The controller does not execute any other statements in the routine until it
completes the loop.

Consider using a different construct, such as IF...THEN.

Example 1:

If you want this Enter this structured text

Clear bits 0 - 31 in an array of BOOLs:

1. Initialize the subscript tag to 0.

2. Clear array[subscript]. For example, when
subscript = 5, clear array[5].

3. Add 1 to subscript.

4. If subscript is ≤ to 31, repeat 2. and 3.

Otherwise, stop.

FOR subscript: = 0 TO 31 BY 1 DO

 array[subscript] := 0;

END_FOR;

Example 2:

If you want this Enter this structured text

Copy elements from one array to another until
the position not exceeds the number of valid
elements.

Both arrays are from DINT type and contain 10
elements.

1. Initialize the position tag to 0.

FOR position := 0 TO 10 BY 1 DO

IF position <= valid_count THEN

 Quantity[position] :=
Inventory[position];

ELSIF

 EXIT;

195 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

2. If valid_count not exceeds current position
the value of position copies from Inventory array
to Quantity. Otherwise, stop.

3. Add 1 to position.

4. If position is ≤ to 10, repeat 2 and 3.
Otherwise, stop.

END_IF;

END_FOR;

196 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

6.3.4 RETURN

Use the RETURN statement if you want to exit the program directly.

RETURN;

Description:

RETURN statement exits the program directly, without executing any code.

RETURN statement may be used anywhere in program code.

Example:

If you want this Enter this structured text

If rejects > 3 then

 conveyor = off (0)

 alarm = on (1)

 return program

IF rejects > 3 THEN

 conveyor := 0;

 alarm := 1;

 RETURN;

END_IF;

197 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

6.4 Function Block
Function block statements consist of the mechanisms for invoking a function block and for

returning control. Function block is invoked by a statement consisting of the name of the

function block instance followed by a parenthesized list of input or/and output parameters

assignment.

FB_instance(In1 := TRUE, In2 := 44, Out => bDone);

Component Description

FB_instance tag name of the function block instance

() Optional consist function block input or/and output parameters
assignment.

 Symbol Description

 := Assign tag, immediate or expression to input or in-out
parameter.

 => Assign output or in-out parameter value to tag.

; Ends the function block call.

Description:

A function block call is a standalone statement and cannot be used in expressions.

A function block call uses parenthesis to contain its input or/and output parameters.

Depending on the function block type and call, there can be zero, one, or multiple

parameters.

When executed, a function block yields one or more values that are part of a data structure.

Terminate the instruction with a semi colon “;”.

The order in which parameters are listed in a function block invocation shall not be

significant. It is not required that all parameters be assigned in every invocation of a function

block. If a particular input parameter is not assigned a value in a function block invocation,

the previously assigned value (or initial value, if no previous assignment has been made)

shall apply.

There is two ways for entering function block call:

 by Drag&Drop operation.

Click on function block name in Project Bar and drag it to ST Routine View:

198 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

The cursor displays the place where instance will be inserted. Leave the mouse button.

Create New Tag dialog appears. Write a desired name and select OK.

If tag squareN from type Square does not exist, it is created

 by typing the symbol “(” after existing function block tag name.

199 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

6.4.1 Standard Function Blocks

Standard function blocks are involved in ConveyLogix Programmer.

Unlike ladder logic, in structured text there is no rung-condition-in that trigger execution and

rung-condition-out to state transition. For some standard function block (for example

IEC_TON) input parameter EN is used for rung-condition-in and output parameter Q – for

rung-condition-out.

IEC_TON

IEC_TON function block is a non-retentive timer that accumulates time when an instance is

called and enabled (EN operand is true).

Syntax

Declaration of an instance of IEC_TON is performed in “Static” section of the function block

tags (for example: myIEC_TON).

To call IEC_TON use the following syntax:

myIEC_TON(EN := <Operand>, PT := <Operand>, Q => <Operand>, ET => <Operand>)

Operands

Operand Declaration Type Description

EN Input BOOL Enable input

PT Input DINT
Duration of the on delay in milliseconds. The

value of the PT parameter must be positive.

Q Output BOOL Operand that is set when the time PT expires

ET Output DINT Current time value

Description

IEC_TON instruction is used to delay the setting of the Q parameter for the programmed

duration PT. The instruction starts when EN parameter changes from "0" to "1" (positive

signal edge). The programmed time PT begins when the instruction starts. When the PT

duration has expired, the Q parameter returns signal state "1". The parameter Q remains set

as long as the start input is still "1". If the signal state of the EN parameter changes from "1"

to "0", the parameter Q will be reset. The timer function is started again when a new rising

edge is detected at the parameter EN.

The current time value is stored in the ET parameter. The time value starts at “0” and ends

when the value of the time duration PT is reached. The ET parameter is reset as soon as the

signal state of the parameter EN changes to "0".

200 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Example:

Lets TimerA is a tag from standard function block IEC_TON type. When Switch is set, Light

will be set after 1800 ms. Then when Switch is cleared, Light goes off.

TimerA(EN := Switch, PT := 1800, Q => Light);

There is second way to write this example – first assign inputs parameters, then call function

block and after that assign outputs parameters.

Timer.EN := Switch;

TimerA.PT := 1800;

TimerA();

Light := TimerA.Q;

IEC_TOF

IEC_TOF function block is a non-retentive timer that accumulates time when an instance is

called and enabled (EN operand is false).

Syntax

Declaration of an instance of IEC_TOF is performed in “Static” section of the function block

tags (for example: myIEC_TOF).

To call IEC_TOF use the following syntax:

myIEC_TOF(EN := <Operand>, PT := <Operand>, Q => <Operand>, ET => <Operand>)

Operands

Operand Declaration Type Description

EN Input BOOL Enable input

PT Input DINT
Duration of the on delay in milliseconds. The

value of the PT parameter must be positive.

Q Output BOOL Operand that is reset when the time PT expires

ET Output DINT Current time value

Description

IEC_TOF instruction is used to delay the resetting of the Q parameter for the programmed

duration PT. The Q parameter is set when EN parameter changes from "0" to "1" (positive

signal edge). When the signal state of the EN parameter changes back to "0", the

programmed time PT starts. The parameter Q remains set as long as the time duration PT is

running. When the time duration PT expires, the Q parameter is reset. If the signal state of

201 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

the IN parameter changes to "1" before the time duration PT has expired, the timer is reset.

The signal state of the Q parameter remains set to "1".

The current time value is stored in the ET parameter. The current time value starts at 0 and

ends when the value of the time duration PT is reached. When the time duration PT expires,

the ET parameter remains set to the current value until the EN parameter changes back to

"1". If the EN parameter changes to "1" before the time duration PT has expired, the ET

parameter is reset to the value 0.

Example:

Lets myTOF is a tag from standard function block IEC_TOF type. To call IEC_TON use the

following syntax:

myTOF(EN := Tag_Start, PT := Tag_PresetTime,

Q => Tag_Status, ET => Tag_ElapsedTime);

There is second way to write this example – first assign inputs parameters, then call function

block and after that assign outputs parameters.

myTOF.EN := Tag_Start;

myTOF.PT := Tag_PresetTime;

myTOF ();

Tag_Status := myTOF.Q;

Tag_ElapsedTime := myTOF.ET;

With a change in the signal state of the "Tag_Start" operand from "0" to "1", the "Tag_Status"

operand is set. When the signal state of the "Tag_Start" operand changes from "1" to "0", the

time programmed for the “Tag_PresetTime” parameter is started. As long as the time is

running, the "Tag_Status" operand remains set. When the time has expired, the Tag_Status

operand is reset. The current time value is stored in the "Tag_ElapsedTime" operand.

IEC_RTO

IEC_RTO function block is a retentive timer that accumulates time when an instance is called

and enabled (EN operand is true).

The syntax and operands of IEC_RTO are the same as IEC_TON function block. IEC_RTO

accumulates the time until it is disabled.

IEC_DOL

IEC_DOL function block counts evaluated pulses of the left motor when an instance is called

and enabled (EN operand is true).

The syntax and operands of IEC_DOL are the same as IEC_TON function block.

202 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

IEC_DOR

IEC_DOR function block counts evaluated pulses of the right motor when an instance is

called and enabled (EN operand is true).

The syntax and operands of IEC_DOR are the same as IEC_TON function block.

IEC_CTU

IEC_CTU function block counts upward when an instance is called and enabled (CU operand

is true).

Syntax

Declaration of an instance of IEC_CTU is performed in “Static” section of the function block

tags (for example: myIEC_CTU).

To call IEC_CTU use the following syntax:

myIEC_CTU(CU := <Operand>, R := <Operand>, PV := <Operand>,

Q => <Operand>, CV => <Operand>)

Operands

Operand Declaration Type Description

CU Input BOOL Count up input

R Input BOOL Reset input

PV Input DINT Value at which the output Q is set.

Q Output BOOL Counter status

CV Output DINT Current counter value

Description

IEC_CTU instruction is used to increment the value at the CV parameter. When the signal

state of the parameter CU changes from "0" to "1" (positive signal edge), the instruction is

executed and the current counter value of the parameter CV is incremented by one. When

the instruction is executed for the first time the current count of the CV parameter is set to

zero. The counter value is increased each time a positive signal edge is detected, until it

reaches the value of the parameter CV. When the CV value is reached, the signal state of

the CU parameter no longer has an effect on the instruction.

The signal state of the Q parameter is determined by the PV parameter. When the current

counter value is greater than or equal to the value of the PV parameter, the Q parameter is

set to signal state "1". In all other cases, the signal state of the Q parameter is "0". You can

also specify a constant for the PV parameter.

203 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

The value of the CV parameter is reset to zero when the signal state at the R parameter

changes to "1". As long as the signal state of the R parameter is "1", the signal state of the

CU parameter has no effect on the instruction.

Example:

Lets myCTU is a tag from standard function block IEC_CTU type. To call IEC_CTU use the

following syntax:

myCTU(CU := Tag_Count, R := Tag_Reset, PV := Tag_PresetValue

Q => Tag_Status, CV => Tag_CounterValue)

There is second way to write this example – first assign inputs parameters, then call function

block and after that assign outputs parameters.

myCTU.CU := Tag_Count;

myCTU.R := Tag_Reset;

myCTU.PV := Tag_PresetValue;

myCTU();

Tag_Status := myCTU.Q;

Tag_CounterValue := myCTU.CV;

When the signal state of the "Tag_Count" operand changes from "0" to "1", the IEC_CTU

instruction executes and the current counter value of the "Tag_CounterValue" operand is

incremented by one. With each additional positive signal edge, the counter value is

incremented until it reaches the “Tag_PresetValue” value.

The "Tag_Status" output has signal state "1" as long as the current counter value is greater

than or equal to the value of the "Tag_PresetValue" operand. In all other cases, the

"Tag_Status" output has signal state "0". The current counter value is stored in the

"Tag_CounterValue" operand.

IEC_CTD

IEC_CTD function block counts downward when an instance is called and enabled (CD

operand is true).

Syntax

Declaration of an instance of IEC_CTD is performed in “Static” section of the function block

tags (for example: myIEC_CTD).

To call IEC_CTD use the following syntax:

myIEC_CTD(CD := <Operand>, LD := <Operand>, PV := <Operand>,

Q => <Operand>, CV => <Operand>)

204 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Operands

Operand Declaration Type Description

CD Input BOOL Count down input

LD Input BOOL Load input

PV Input DINT Value at which the output Q is set.

Q Output BOOL Counter status

CV Output DINT Current counter value

Description

IEC_CTU instruction is used to decrement the value at the parameter CV. When the signal

state of the CD parameter changes from "0" to "1" (positive signal edge), the instruction is

executed and the current counter value of the CV parameter is decremented by one. When

the instruction is executed for the first time, the counter value of the CV parameter will be set

to the value of the PV parameter. Each time a positive signal edge is detected, the counter is

decremented until it reaches the zero. When the zero is reached, the signal state of the CD

parameter no longer has an effect on the instruction.

If the current counter value is less than or equal to zero, the Q parameter is set to signal

state "1". In all other cases, the signal state of the Q parameter is "0".

The value of the CV parameter is set to the value of the PV parameter when the signal state

of the LD parameter changes to "1". As long as the signal state of the LD parameter is "1",

the signal state of the CD parameter has no effect on the instruction.

Example:

Lets myCTD is a tag from standard function block IEC_CTD type. To call IEC_CTD use the

following syntax:

myCTD(CD := Tag_Count, LD := Tag_Load, PV := Tag_PresetValue

Q => Tag_Status, CV => Tag_CounterValue)

There is second way to write this example – first assign inputs parameters, then call function

block and after that assign outputs parameters.

myCTD.CD := Tag_Count;

myCTD.LD := Tag_Load;

myCTD.PV := Tag_PresetValue;

myCTD();

Tag_Status := myCTD.Q;

205 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

Tag_CounterValue := myCTD.CV;

When the signal state of the "Tag_Count" changes from "0" to "1", the IEC_CTD instruction

executes and the value of the "Tag_CounterValue" operand is decremented by one. With

each additional positive signal edge, the counter value will be decremented until it reaches

the zero.

The operand "Tag_Status" has the signal state "1" as long as the current counter value is

less than or equal to zero. In all other cases, the "Tag_Status" output has signal state "0".

The current counter value is stored in the "Tag_CounterValue" operand.

206 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

6.4.2 User-defined Function Blocks

User-defined function blocks are created by the user (see point 4.1).

Example:

Call CalcA instance of Calculate function block (the same example from point 4.5) on ST

from your custom function block.

//Assign input parameters

CalcA.ParamB := 20;

CalcA.ParamC := 30;

/*Call FB*/

CalcA();

(*Assign output parameter*)

ResultCalc := CalcA.Sum;

This part of can be written also in one line:

CalcA(ParamB := 20, ParamC := 30, Sum => ResultCalc);

You can examine function block output parameters:

IF CalcA.Sum > 500 THEN … END_IF;

But you cannot assign a value to output parameter:

CalcA.Sum := 500;

Also you cannot use called function block static parameters:

IF CalcA.Const > 500 THEN

 CalcA.Const := 500;

END_IF;

207 Program Structured Text

Publication ERSC-1200 Rev 2.2 – July 2016

6.5 Comments
To make your structured text easier to interpret, add comments to it.

 Comments let you use plain language to describe how your structured text works.

 Comments do not affect the execution of the structured text.

To add comments to your structured text:

To add a comment: Use one of these formats:

on a single line //comment

at the end of a line of structured text (*comment*)

/*comment*/

within a line of structured text (*comment*)

/*comment*/

that spans more than one line (*start of comment . . . end of

comment*)

/*start of comment . . . end of

comment*/

For example:

Format: Example:

//comment At the beginning of a line

//Check conveyor belt direction

IF conveyor_direction THEN...

At the end of a line

ELSE //If conveyor isn’t moving, set alarm light

light := 1;

END_IF;

(*comment*) Sugar.Inlet[:=]1;(*open the inlet*)

IF Sugar.Low (*low level LS*)& Sugar.High (*high level

LS*)THEN...

(*Controls the speed of the recirculation pump. The

speed depends on the temperature in the tank.*)

IF tank.temp > 200 THEN...

208 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Format: Example:

/*comment*/ Sugar.Inlet := 0;/*close the inlet*/

IF bar_code = 65 /*A*/ THEN...

/*Gets the number of elements in the Inventory array

and stores the value in the Inventory_Items tag*/

END_IF;

209 Download a Project into Controller

Publication ERSC-1200 Rev 2.2 – July 2016

7.0 Download a Project into Controller
To download the project into controller, select Controller/Logic / Download Program menu or

click on icon.

Download procedure requires to be fulfilled the next conditions:

 controller IP Address must be set;

 project must be saved on the disc;

 The controller must be ONLINE. If the controller is ConveyLinx, it have to be in PLC
mode;

 No errors in the routine;

 All JMP/LBL instructions are correct.

Download procedure passes the next points:

 Verifies the routine;

 Calculates tags and instructions addresses;

 Verifies and calculates JMP/LBL conditions;

 Creates PLCDATA_xxx.bin file on the same folder, where is situated the project file.
Xxx is the project name;

 Downloads PLCDATA_xxx.bin into the controller;

 Waits to give time the controller to start new program execution.

During Download procedure all features are disabled and progress bar is shown to indicate

the process.

If some error occurs Download operation is interrupted. The result of Download operation is

shown in Output bar.

211 Debug Mode

Publication ERSC-1200 Rev 2.2 – July 2016

8.0 Debug Mode
Debug mode is used to test and debug the ladder logic. ConveyLogix Progammer’s Debug

mode doesn’t interfere with the controller’s function.

In Debug mode ConveyLogix Progammer send requests for controller’s header and for

needed tags values.

In Debug mode tags values are displayed in green color.

8.1 Enter the Debug Mode

To enter the Debug mode, select Controller/Logic / Debug menu or click on icon.

ConveyLogix Progammer checks the next conditions:

 The project is saved on the disc;

 The controller is ONLINE;

 There is a ladder program into controller;

 Ladder program into controller is the same as the project;

 Reading of controller service information is successful;

 The controller doesn’t report critical errors.

If any of conditions are not fulfilled, the message is reported. The error descriptions are given

on Appendix 1.

If Debug mode runs successful, debug icon is checked – .

212 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

On the Title bar is displayed Debug mode and time of ladder program execution.

8.2 Change the Controller Mode
The controller has two modes:

 Program Mode – the controller doesn’t execute ladder the logic program.

 Run Mode – the controller runs the ladder program.

You may see the controller’s mode only in ConveyLogix Progammer Debug mode.

When the controller is in Run Mode the Controller/Logic / Run Mode menu is checked and

corresponding icon is chosen.

To change the controller’s mode to Program, select Controller/Logic / Program Mode menu

or click on icon.

213 Debug Mode

Publication ERSC-1200 Rev 2.2 – July 2016

When the controller is in Program Mode the Controller/Logic / Program Mode menu is

checked and corresponding icon is chosen.

To change the controller’s mode to Run, select Controller/Logic / Run Mode menu or click on

icon.

The controller’s modes are mutually exclusive.

8.3 Watch and Change Boolean Tags
When the operand of boolean instructions is 1 (TRUE), rung-condition-in and rung-condition-

out of the element are displayed in green colour.

To change the value of the operand of boolean instruction right-click on the element and

select Toggle Bit menu (or press Ctrl + T keys).

If the value of the operand was 1 (TRUE), it is changed to 0 (FALSE).

214 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Now in this example, LimitSwitch is cleared, and Light_1 is cleared.

If the value of the operand was 0 (FALSE), it is changed to 1 (TRUE).

You also may watch and change Boolean values in Tags view.

Current tags values are displayed in Debug Value column in green colour. To change

Boolean value, click on Debug Value cell for the corresponding tag.

Type the new value (0 or 1) and click outside the rectangle or press Enter key.

215 Debug Mode

Publication ERSC-1200 Rev 2.2 – July 2016

When you change a bit value on Tags View, changing is reflected all occurrences on on

Ladder View. And backwards, when you change a bit value on Ladder View, changing is

reflected on Tags View.

8.4 Watch and Change Non-boolean Tags
In Debug mode non-boolean operands are displayed below tag name in style, defined in

Tags View.

To change the tag value, double-click on it. Edit box will appear.

Type the new value and click outside the edit box or press Enter key.

Now in this example, ValueA is not greater than or equal to ValueB, and Light_2 is cleared.

You also may watch and change non-boolean values in Tags View in the same way as

boolean tags.

216 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

To change non-boolean value, click on Debug Value cell for the corresponding tag.

Type the new value and click outside the rectangle or press Enter key.

When you change the tag value on Tags View, changing is reflected to all occurrences on

Ladder View. And backwards, when you change the tag value on Ladder View, changing is

reflected on Tags View.

8.5 Leave the Debug mode
To leave the Debug mode, select Controller/Logic / Stop Debugging menu or click on

checked icon.

217 Appendix A – Controller Tags

Publication ERSC-1200 Rev 2.2 – July 2016

Appendix A – Controller Tags

ConveyLinx Controller Tags

Controller Tag Name Type Modbus Register(s)

Input Controller Tags

Inputs DINT See ConveyLinx Inputs Tag

FromUpstreamState INT 134

FromUpstreamTracking DINT 139, 140

FromDownstreamState INT 232

FromPLC DINT 266, 267

FromPLCArray INT[16] 13200 – 13215

MyIPAddress DINT 26, 27

ServoReadyLeft BOOL 11 – bit 0

ServoReadyRight BOOL 16 – bit 0

FirstLadderExec BOOL ---

Output Controller Tags

Outputs DINT See ConveyLinx Outputs Tag

ToUpstreamState INT 116

ToDownstreamState INT 196

ToDownstreamTracking DINT 201, 202

ToPLC DINT 268, 269

ToPLCArray INT[16] 13100 - 13115

SensorPolarity INT 34

SpeedLeftMTR INT 40

SpeedRightMTR INT 64

ServoControllLeft INT 8

ServoControllRight INT 13

ServoResetLeft BOOL 9 – bit 0

218 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Controller Tag Name Type Modbus Register(s)

ServoResetRight BOOL 14 – bit 0

ServoCommandLeft BOOL 9 – bit 1

ServoCommandRight BOOL 14 – bit 1

ConveyLinx Inputs Tag

Tag Bit Description Modbus Register Register Bit

0 PIN3, Left Sensor Port 35 0

1 PIN3, Left Control Port 35 1

2 PIN3, Right Sensor Port 35 2

3 PIN3, Right Control Port 35 3

4 PIN4, Left Sensor Port 35 4

5 PIN4, Left Control Port 35 5

6 PIN4, Right Sensor Port 35 6

7 PIN4, Right Control Port 35 7

16 Right Sensor Detect 36 0

17 Left Sensor Detect 36 1

ConveyLinx Outputs Tag

Tag Bit Description Modbus Register Register Bit

0 Left MDR RUN 260 0

1 Left MDR Direction 260 8

2 Right MDR RUN 270 0

3 Right MDR Direction 270 8

4 Left Control Digital Out 37 1

5 Right Control Digital Out 37 3

6 Left MDR Dig. Mode Enable 60 15

7 Right MDR Dig. Mode Enable 84 15

8 Left MDR Low MOSFET 1 60 0

219 Appendix A – Controller Tags

Publication ERSC-1200 Rev 2.2 – July 2016

Tag Bit Description Modbus Register Register Bit

9 Left MDR Low MOSFET 2 60 1

10 Left MDR Low MOSFET 3 60 2

11 Right MDR Low MOSFET 1 84 0

12 Right MDR Low MOSFET 2 84 1

13 Right MDR Low MOSFET 3 84 2

14 Left Mechanical Break 60 6

15 Right Mechanical Break 84 6

16 Left Mechanical Break Control 60 7

17 Right Mechanical Break Control 84 7

ConveyLinx-Ai and ConveyLinx-Ai2 Controller Tags

ConveyLinx-Ai and ConveyLinx-Ai2 Controller Tags are the same as ConveyLinx Controller

Tags except Inputs, Outputs and the following two tags:

Controller Tag Name Type Modbus Register(s)

ServoPositionLeft INT 62

ServoPositionRight INT 86

ConveyLinx-Ai and ConveyLinx-Ai2 Inputs Tag

Tag Bit Description Modbus Register Register Bit

0 Left Input, PIN2 35 0

2 Right Input, PIN2 35 2

4 Left Sensor Port, PIN4 35 4

6 Right Sensor Port, PIN4 35 6

16 Right Sensor Detect 36 0

17 Left Sensor Detect 36 1

220 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

ConveyLinx-Ai and ConveyLinx-Ai2 Outputs Tag

Tag Bit Description Modbus Register Register Bit

0 Left MDR RUN 260 0

1 Left MDR Direction 260 8

2 Right MDR RUN 270 0

3 Right MDR Direction 270 8

4 Left Control Digital Out 37 0

5 Right Control Digital Out 37 1

6 Left MDR Dig. Mode Enable 60 15

7 Right MDR Dig. Mode Enable 84 15

8 Left MDR Low MOSFET 1 60 0

9 Left MDR Low MOSFET 2 60 1

10 Left MDR Low MOSFET 3 60 2

11 Right MDR Low MOSFET 1 84 0

12 Right MDR Low MOSFET 2 84 1

13 Right MDR Low MOSFET 3 84 2

18 Left Set Pin2 As Output 37 5

19 Left Set Pin2 As Output 37 6

ConveyNet I/P (CNIP) Controller Tags

Controller Tag Name Type Modbus Register(s)

Input Controller Tags

Inputs DINT Physical Digital Inputs

FromUpstreamState INT 134

FromUpstreamTracking DINT 139, 140

FromDownstreamState INT 232

FromPLC DINT 266, 267

MyIPAddress DINT 26, 27

221 Appendix A – Controller Tags

Publication ERSC-1200 Rev 2.2 – July 2016

Controller Tag Name Type Modbus Register(s)

RS485 InData INT[4] 40, 41, 42, 43

RS485 Errors INT 79

FirstLadderExec BOOL ---

Output Controller Tags

Outputs DINT Physical Digital Outputs

ToUpstreamState INT 116

ToDownstreamState INT 196

ToDownstreamTracking DINT 201, 202

ToPLC DINT 268, 269

RS485 OutData INT[4] 50, 51, 52, 53

RS485 Default INT[4] 60, 61, 62, 63

SlaveID INT 70

StartRead INT 71

NumToRead INT 72

Start Write INT 73

NumToWrite INT 74

Baudrate INT 75

RS485 Setings INT 76

Scanrate INT 77

RS485 Timeout INT 78

223 Appendix B – Data Type Conversion

Publication ERSC-1200 Rev 2.2 – July 2016

Appendix B – Data Type Conversion

Data conversions occur when you mix data types for the parameters within one instruction.

Instructions execute faster and require less memory if all the operands of the instruction use:

 The same data type.

 An optimal data type:

– In the “Operands” section of each instruction in this manual, a bold data type indicates

an optimal data type.

– The DINT data type is typically the optimal data types.

If you mix data types and use tags that are not the optimal data type, the controller converts the

data according to these rules

 If any of the operands is not a DINT value, then input operands convert to DINT.

 After instruction execution, the result (a DINT value) converts to the destination data
type, if necessary.

You cannot specify a BOOL tag in an instruction that operates on integer data types.

Because the conversion of data takes additional time and memory, you can increase the

efficiency of your programs by:

 Using the same data type throughout the instruction.

 Minimizing the use of the SINT or INT data types.

In other words, use all DINT tags, along with immediate values, in your instructions.

The following sections explain how the data is converted when you use SINT or INT tags or

when you mix data types.

SINT or INT to DINT
For those instructions that convert SINT or INT values to DINT values, the

224 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

“Operands” sections in this manual identify the conversion method.

Conversion Method Converts Data By Placing

Sign-extension the value of the left-most bit (the sign of the value) into each

bit position to the left of the existing bits until there are 32 bits.

Zero-fill zeroes to the left of the existing bits until there are 32 bits.

The following example shows the results of converting a value using sign-extension and zero-

fill.

Value 2#1111_1111_1111_1111 (-1)

Converts by sign-

extension

2#1111_1111_1111_1111_1111_1111_1111_1111 (-1)

Converts by zero-fill 2#0000_0000_0000_0000_1111_1111_1111_1111 (65535)

Because immediate values are always zero-filled, the conversion of a SINT or INT value may

produce unexpected results. In the following example, the comparison is false because Source

A, an INT, converts by sign-extension; while Source B, an immediate value, is zero-filled.

If you use a SINT or INT tag and an immediate value in an instruction that converts data by

sign-extension, use one of these methods to handle immediate values:

 Specify any immediate value in the decimal radix.

225 Appendix B – Data Type Conversion

Publication ERSC-1200 Rev 2.2 – July 2016

 If you are entering the value in a radix other than decimal, specify all 32 bits of the
immediate value. To do so, enter the value of the left-most bit into each bit position to its
left until there are 32 bits.

 Create a tag for each operand and use the same data type throughout the instruction. To
assign a constant value, either:

– Enter it into one of the tags.

– Add a MOV instruction that moves the value into one of the tags.

 Use a MEQ instruction to check only the required bits.

226 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

DINT to SINT or INT
To convert a DINT value to a SINT or INT value, the controller truncates the upper portion of the

DINT, if necessary. The following example shows the result of a DINT to SINT or INT

conversion.

DINT Value Converts To This Smaller Value

16#00010081 (65665) INT 16#0081 (129)

 SINT 16#81 (-127)

227 Appendix C – Errors description

Publication ERSC-1200 Rev 2.2 – July 2016

Appendix C – Errors description

Critical errors description

Error # Description Type

1 Type is not ConveyLinx or ConveyNet Header

2 PLC program size is greater then PLC file Header

3 Wrong Ladder Program size Header

4 "?" Header

5 Wrong Tags size Header

6 "?" Header

7 Ladder Program Start, Ladder Program End or Tags Start

in not a DWORD address

Header

8 Allocating RAM for Tags Error Header

9 Wrong Non Volatile Tags size Header

10 Non Volatile Tags size is greater then 96 bytes Header

100 Connection Tags Error Header

1 First instruction is not RUNG or missing RUNG or RND Prescan

2 Invalid Instruction Code Prescan

3 BST number is different then BND number in one Rung Prescan

4 BST number is different then NXB number in one Rung Prescan

5 Too low stack for BST/BND instructions Prescan

6 Bit Operand exceed 31 Prescan

228 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

7 Bit Operand Address >= Tags Size Prescan

8 Timer Operand Address >= Tags Size Prescan

9 Operand Address >= Tags Size Prescan

10 Operand Address must be Tag Address Prescan

11 Wrong JMP or JSR instructions Prescan

12 Wrong MCR (must be even count) Prescan

13 Ladder Program length error or missing two DWORDs after

END

Prescan

14 Missing END of Ladder Program Prescan

15 Missing RUNG or RND (must be equal) Prescan

16 LBL is not first instruction of Rung Prescan

17 Operand Address is not aligned to WORD/DWORD Prescan

18 Wrong Operand Type (must be 0, 1, 2, 4 or 8) Prescan

20 Subroutine parameters exceed 31 Prescan

21 Wrong Address of JSR or FOR instructions Prescan

22 SBR must be first instruction in Rung Prescan

23 JSR parameters (inputs and outputs) are different Prescan

24 SBR parameters must be Tags Prescan

25 Only one SBR must be in routine Prescan

26 Each routine must finish with RET, RND or END Prescan

27 Shouldn't have SBR in Main routine Prescan

28 Before FOR(code 69) must be FOR(code 63) init Prescan

29 Routine address in FOR must start first Rung Prescan

30 FOR parameters must be Zero (4 DWORDs) Prescan

229 Appendix C – Errors description

Publication ERSC-1200 Rev 2.2 – July 2016

31 BRK or RET instructions can't be use in Main routine Prescan

32 Order Type (0, 1, 2) exceed 2 Prescan

33 In SWP if Source Operand is DWORD then Dest Operand

must be DWORD

Prescan

34 Wrong Operand Type in SWP Prescan

Runtime errors description

Error # Description Type

100 The End of Stack Runtime

101 The numbers of JSR out parameters is different then in

parameters

Runtime

102 FOR instruction Step Size is Zero Runtime

103 Divide by Zero Runtime

111 Incorrect Instruction - Online Runtime

230 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Appendix D – Module-Defined Structures

Zone Structure

Mnemonic Data Type Description

.NU1 SINT Not used.

.NU2 SINT Not used.

.State SINT

.ReverseState SINT

.NU3 SINT Not used.

.NU4 SINT Not used.

.Sensors SINT

.Motors SINT

.ZoneTracking DINT

.ToNextTracking DINT

231 Appendix E – Merger Unit Example

Publication ERSC-1200 Rev 2.2 – July 2016

Appendix E – Merger Unit Example

In this example is shown how to make a Merger Unit on picture below, using four ConveyLinx

modules in 192.168.205.XX subnet.

Step 1

Wire the ConveyLinx modules how is shown on the picture. Press Install button of the first

module (marked with 192.168.205.20 IP Address) and hold it pressed about 20 seconds. Install

procedure starts. When the install procedure is finished the ConveyLinx modules will be with IP

Addresses from 192.168.205.20 to 192.168.205.23.

Step 2

232 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Put the ConveyLinx modules to corresponding mode depending of their purpose.

IP Address Purpose Mode

192.168.205.20 Spur control ZPA mode

192.168.205.21 Upstream to Merge zone control ZPA mode

192.168.205.22 Controls the Merge zone PLC I/O Controlled mode

192.168.205.23 Downstream to Merge zone control ZPA mode

Use EasyRoll, “Advanced Dialog” (F2)/“Connection” Tab to remove connection from

192.168.205.20 to 192.168.205.21 and vice versa.

Again use EasyRoll, “Connection” Tab to put 192.168.205.22 in PLC I/O Controlled mode, but

LEAVE CONNECTIONS to Upstream and Downstream module.

233 Appendix E – Merger Unit Example

Publication ERSC-1200 Rev 2.2 – July 2016

Because you left the connections to Upstream and Downstream modules, in your PLC program

you may use the following Controller tags for:

Controller Tag Purpose

ToUpstreamState Automatically propagated over connection to Upstream module.

Use the next states to control Upstream module.

 Value State

234 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

 1 EMPTY

 2 SENDING/ACCEPTING

 4 FULL_RUNNING

 5 FULL_STOPPED

 6 BUSY

ToDownstreamState Automatically propagated over connection to Downstream

module. Same states values as above.

ToDownstreamTracking Automatically propagated over connection to Downstream

module.

Step 3

To communicate with other modules (different from Upstream and Downstream) you may use

four special purpose tags in the Controller Tags. By default they are named Tag1, Tag2, Tag3,

Tag 4, but you may change their names and data type.

To configure communication properties of these tags, click with mouse on the left most box

(where X shows unused, C shows Consumed tag and P shows Produced tag).

235 Appendix E – Merger Unit Example

Publication ERSC-1200 Rev 2.2 – July 2016

For receiving data from the Spur module rename “Tag2” to “FromSpur” and configured it as

consumed from 192.168.205.20. Select From UpstreamZone to receive data from the spur’s

Upstream zone (as this module have only one zone, which is always upstream).

From the Spur module you need to receive both the state of the zone and the tracking. To do

this you’ll have to change the Data Type of this tag to “Zone” (Module-Defined structure data

type).

236 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

To control the Spur, rename “Tag1” to “ToSpur”, Configure it as Produced to 192.168.205.20.

As you want to control the Discharge side of this module, select “To Discharge”.

Leave data type of this tag SINT or INT.

237 Appendix E – Merger Unit Example

Publication ERSC-1200 Rev 2.2 – July 2016

Few details on the example:

All sensor and control port inputs are packed in controller tag Inputs. You may see description

for each bit in Description field.

You may use SensorPolarity tag to inverse polarity of each Sensor/Control input.

Setting ON on any of SensorPolarity bit inverts the appropriate Input bit.

In this example on Merge zone is used only one sensor, attached to right sensor port.

It’s with a retro reflector, so it is needed to inverse Right Sensor Pin4 bit. Sensors also have ON

on sensor error pin when there is no error, so it is also needed to invert Right Sensor Pin3.

Using SensorPolarity tag helps you in 2 ways:

 You may use positive logic in your program (ON when there is product on the sensor
and OFF when there is no product, ON when there is gain error and OFF when there is
no error).

 LEDs on the module will show the correct state – Green ON when there is product, Red
ON when there is gain error.

You may see sensor polarity change in rung 0.

238 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

On the Merge zone it is used only one sensor and one MDR (connected to the right motor port).

You may add second motor control and Jam sensor logic.

There is no JAM or error control logic in the example.

Take special care on tracking manipulation. You should take tracking from Spur/Upstream on

raising edge of the Merger sensor and place it in an internal tag.

You should prepare tracking for downstream module at the time you report to it

that you are in the EMPTY/SENDING state. At the same time you should clear

your internal tag to avoid tracking duplication if somebody throw product on the

merge zone.

In the FromUpstreamState/FromDownstreamState tags you should always

mask out the highest 8 bits (they are used in bi-directional operation and are

not part of the tracking). In this example it is done by simply copying these tags

in SINT tags.

Main Program Tags

The values of Accept.PRE and Transfer.PRE are equal to 3000.

239 Appendix E – Merger Unit Example

Publication ERSC-1200 Rev 2.2 – July 2016

Ladder Logic Program

240 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

241 Appendix E – Merger Unit Example

Publication ERSC-1200 Rev 2.2 – July 2016

242 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

243 Appendix E – Merger Unit Example

Publication ERSC-1200 Rev 2.2 – July 2016

244 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

245 Appendix E – Merger Unit Example

Publication ERSC-1200 Rev 2.2 – July 2016

247 Appendix F – Simple Motor Control Example with
Servo Commands

Publication ERSC-1200 Rev 2.2 – July 2016

Appendix F – Simple Motor Control Example with

Servo Commands

In this example is shown how to make a Right Angle Transfer (RAT), using simple motor

control.

There is one sensor, named Home Sensor and one switch – Control Up/Down.

Home Sensor is connected to Right Control Port, PIN4 which corresponds to “Input.7” controller

tag. In ConveyLogix program we create the tag “HomeSensor”, which is an alias of “Input.7”.

Control Up/Down switch is connected to Left Control Port, PIN4 which corresponds to Input.5

controller tag. “Control_UpDown” tag is an alias of Input.7.

Tags “StateUp” and “StateDown” indicate the end position of the RAT lift.

“LiftOffset” tag is the distance, which RAT lift has to move to reach the up position. In this

example the Lift mechanism travels 30 mm that corresponds to 300 pulses.

In this example, the following Controller Tags are used:

“ServoCommandLeft” – when set, Lift motor starts to move upward (counter-clockwise) to the

position which is set in “ServoControlLeft”.

“ServoControlLeft” – contains the pulses that the left motor has to process.

“ServoResetLeft” – clears the pulses that the left motor has to process.

“ServoReadyLeft” – indicates that the pulses are reached.

248 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Main program tags and routine are the following:

249 Appendix F – Simple Motor Control Example with
Servo Commands

Publication ERSC-1200 Rev 2.2 – July 2016

When Lift is in Home position (“HomeSensor” is true) and Control switch is off

(“Control_UpDown” is false) the next operations are processed:

“ServoCommandLeft” is unlatched – left motor stops its movement.

“ServoResetLeft” is set – the pulses in “ServoControlLeft” are reset.

“StateDown” is set – Lift is in Home position.

When Lift is in Home position (“HomeSensor” is true) and Control switch is turned on

(“Control_UpDown” is set) the next operations are processed:

To “ServoControlLeft” 300 pulses are set.

“ServoCommandLeft” is latched – the left motor starts to move upward

“StateDown” is set – Lift is still in Home position.

When Lift leaves Home Sensor (“HomeSensor” is changed to false) and Control switch is still on

the motor continues to run counter-clockwise (upward) until it reaches the pulses. When Lift

motor reaches the pulses, “ServoResetLeft” is reset and “StateUp” is set.

When Lift is in Up position (“HomeSensor” is false) and Control switch is turned off

(“Control_UpDown” is reset) the next operations are processed:

“Output.0” is true – left motor starts to move downward.

“ServoCommandLeft” is unlatched – left motor servo command is cleared.

When Lift reaches Home Sensor, left motor stops its movement.

During the motor movement “StateUp” and “StateDown” are false.

The following is the same example written in Structured Text:

First you have to create a function block in Structured Text (in this example it is name “RAT”).

250 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

RAT tags:

RAT Routine:

ServoReset := 0;
State_Down := 0;
State_Up := 0;
RunMotor := 0;
IF HomeSensor = 1 THEN

State_Down := 1;
IF Contol_UpDown = 1 THEN

ServoCommand := 1;
ServoControl := LiftOffset;

ELSE
ServoCommand := 0;
ServoReset := 1;

END_IF;
ELSE

IF Contol_UpDown = 1 THEN
IF ServoReady = 1 THEN

State_Up := 1;
END_IF;

ELSE
RunMotor := 1;
ServoCommand := 0;

END_IF;
END_IF;

251 Appendix F – Simple Motor Control Example with
Servo Commands

Publication ERSC-1200 Rev 2.2 – July 2016

Second, you have to create an instance of “RAT” function block (named “fbRAT”) in Main Tags:

And third, you have to initialize “Input” tags of “RAT” function block, call an instance and then

return the values of “Output” tags in Main Program.

252 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

253 Appendix G – Configuration Screen Structure

Publication ERSC-1200 Rev 2.2 – July 2016

Appendix G – Configuration Screen Structure

Configuration Screen Structure is designed to provide an easy way to configure a module via

EasyRoll software.

To open the view of the configuration structure, double-click on “Configuration Screen Structure”

in Project Tree:

Blank tags view is opened. Configuration Structure view is similar to User-Defined type tags

view:

Tags are added, edited and deleted as the same way as User-Defined type tags.

Data types of tags in Configuration Screen Structure can only be simple data types (BOOL,

SINT, INT and DINT).

Tags may be divided into two categories, according to EasyRoll software usage:

 Normal – for monitoring only.

254 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

 Configuration Non-volatile – for configuration and monitoring. These tags are power

independent and use the non-volatile memory of the module. After power cycle, their

values remain unchanged.

To make a tag Configuration Non-volatile, right-click on the cell at the first column and select

“Configuration Non-volatile” menu:

Configuration Non-volatile tags are marked with sign “C” in the first column.

 “Control Type” field defines how the tag will appears in EasyRoll software. For some Control

Types you may add Control Properties.

When you click on this field, a combo-box with three options appears:

 Check – check-box. It is suitable for BOOL data types.

 Number – edit-box. It is suitable for SINT, INT and DINT data types.

With left-click on “Control Properties” cell you may add minimum and/or maximum values for the

tag.

When a tag is Configuration Non-volatile in EasyRoll software “Set” button is displayed next to

the edit-box. “Set” button is used for changing tag values. When the value is not in defined

range a message box appears.

 Selection – combo-box. It is suitable for SINT, INT and DINT data types.

With left-click on “Control Properties” cell you may add, edit and delete selection strings of the

tag.

255 Appendix G – Configuration Screen Structure

Publication ERSC-1200 Rev 2.2 – July 2016

To add a new selection string, click on Add button.

To change the string name or value, select the desired string and then click on Edit button.

To delete the string, select the desired string and then click on Delete button.

When the value of the tag does not correspond to any string, the selection in EasyRoll software

is empty.

The text written in “Description” field will appear in the control tool tip in EasyRoll software.

The text written in “Dimension” field will appear after the control in EasyRoll software.

To work with Configuration Structure you have to add a tag in Main Tags with “Configuration”

data type. You may create only one instance of “Configuration” data type.

When you change a field of Configuration Structure from Main Tags view, it is will be reflected in

the corresponding field in Configuration Screen Structure. And vice versa, if a field from

256 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

Configuration Screen Structure tag is changed, it is reflected in the Configuration Structure

instance in Main Tags.

Example:

In this example a timer will be started, monitored and reset, using Configuration Structure.

The following tags in Configuration Screen Structure are added:

“Run”, “TimerValue” and “TimerDone” are used for monitoring only.

“Run” tag indicates whether the timer is running.

“TimerValue” tag displays timer evaluated value in milliseconds.

“TimerDone” tag is set when timer expiries.

“TimerPreset” and “Phase” tags are configurable from EasyRoll software. They are power

independent and use controller’s Flash memory.

“TimerPreset” tag contains the timer preset value in milliseconds.

“Phase” tag controls the timer execution. When tag value is “0”, the timer will reset. When tag

value is “1”, the timer will start. When timer expiries, “Phase” tag value will set to “2”.

A tag named “ExampleConfig” with “Configuration” data type is added in Main tags.

The sign “N” shows that the tags are Non-volatile.

257 Appendix G – Configuration Screen Structure

Publication ERSC-1200 Rev 2.2 – July 2016

The next picture shows the example Main Program:

258 ConveyLogix Programmer’s Guide

Publication ERSC-1200 Rev 2.2 – July 2016

In EasyRoll software the controls of Configuration Structure are shown as follows:

259 Notes:

Publication ERSC-1200 Rev 2.2 – July 2016

Notes:

 Publication ERSC-1200 Rev 2.2 – July 2016

	Important User Information
	Summary of Changes
	Global Contact Information
	Table of Contents
	Getting Started
	Screen Areas
	Title Bar
	Menu Bar
	Toolbar
	Ladder Instruction Bar
	Project Bar
	Tags View
	Ladder View
	Output Window
	Status Bar

	Create a Project
	Project Organization
	Revision
	Tasks
	Data Types

	Save, Close and Open a Project
	Configure a Controller

	Organize Tags
	Defining Tags
	Scope
	Tag Type
	Data Type

	Create a Tag
	Create an Array
	Assign Alias Tags
	Non-Volatile Tag
	Produced and Consumed Tags
	Assign a Produced Tag
	Assign a Consumed Tag

	Delete a Tag

	Program Ladder Logic
	Definitions
	Write Ladder Logic
	Arrange the Input Instructions
	Arrange the Output Instructions

	Enter Ladder Logic
	Append an Element
	Append a Rung

	Assign Operands
	Editing Ladder Logic
	Edit a Rung
	Edit an Element
	Edit an Operand

	Enter Rung Comment
	Verify the Routine

	Function Blocks
	Creating a Function Block
	Function Block Parameters
	Function Block Program
	Instances of Function Blocks
	Function Block Calls

	Ladder Logic Instructions
	Bit Instructions
	Examine If Closed (XIC)
	Examine If Open (XIO)
	Output Energize (OTE)
	Output Latch (OTL)
	Output Unlatch (OTU)
	One Shot (ONS)
	One Shot Rising (OSR)
	One Shot Falling (OSF)

	Timer and Counter Instructions
	Timer On Delay (TON)
	Timer Off Delay (TOF)
	Retentive Timer On (RTO)
	Count Up (CTU)
	Count Down (CTD)
	Reset (RES)

	Compare Instructions
	Limit (LIM)
	Mask Equal to (MEQ)
	Equal to (EQU)
	Not Equal to (NEQ)
	Less Than (LES)
	Greater Than (GRT)
	Less Than or Equal to (LEQ)
	Greater than or Equal to (GEQ)

	Compute/Math Instructions
	Add (ADD)
	Subtract (SUB)
	Multiply (MUL)
	Divide (DIV)
	Modulo (MOD)
	Negate (NEG)
	Absolute Value (ABS)

	Move/Logical Instructions
	Move (MOV)
	Masked Move (MVM)
	Bitwise AND (AND)
	Bitwise OR (OR)
	Bitwise Exclusive OR (XOR)
	Bitwise NOT (NOT)
	Clear (CLR)

	Module Specific Instructions
	Read Register (RDR)
	Write Register (WRR)
	Write Register Comm (WRC)
	Distance On Left (DOL)
	Distance On Right (DOR)

	Program Control Instructions
	Jump (JMP)
	Label (LBL)
	Jump to Function Block (JFB)
	Return from Function Block (RFB)

	Program Structured Text
	Assignment
	Expression
	Arithmetic Operators and Functions
	Relational Operators
	Logical Operators
	Bitwise Operators
	Modbus Register Operators
	Order of Execution

	Constructs
	IF...THEN
	CASE...OF
	FOR…DO
	RETURN

	Function Block
	Standard Function Blocks
	User-defined Function Blocks

	Comments

	Download a Project into Controller
	Debug Mode
	Enter the Debug Mode
	Change the Controller Mode
	Watch and Change Boolean Tags
	Watch and Change Non-boolean Tags
	Leave the Debug mode

	Appendix A – Controller Tags
	ConveyLinx Controller Tags
	ConveyLinx-Ai and ConveyLinx-Ai2 Controller Tags
	ConveyNet I/P (CNIP) Controller Tags

	Appendix B – Data Type Conversion
	SINT or INT to DINT
	DINT to SINT or INT

	Appendix C – Errors description
	Appendix D – Module-Defined Structures
	Appendix E – Merger Unit Example
	Appendix F – Simple Motor Control Example with Servo Commands
	Appendix G – Configuration Screen Structure
	Notes:

